IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v86y2024ics095717872300214x.html
   My bibliography  Save this article

Generation Expansion Planning considering environmental impact and sustainable development for an Indian state using the LEAP platform

Author

Listed:
  • K, Karunanithi
  • S, Ramesh
  • Raja, S.P.
  • Rowlo, Pranav Kumar

Abstract

GEP (Generation Expansion Planning) is one of the most complex tasks in which planning is done to find the best possible distinct solutions to install new generating units to meet future load demands. This paper uses the Low Emission Analysis Platform (LEAP) software environment to analyse the GEP for the AP Power sector from 2021 to 2050. In recent years, the AP power sector has faced several issues, such as frequent service cuts due to power shortages. In this paper, five scenarios such as Business As Usual (BAU), Low Demand Growth (LDG), High Demand Growth (HDG), Least Cost Optimization (LCO) and Climate Mitigation Scenarios, have been analysed with environmental, technical, and economic parameters. This study has estimated the total environmental emissions and total cost of all scenarios. At present, Andhra Pradesh has a total installed capacity of 25.4 GW. The best scenarios can be selected based on environmental impact, cost-effectiveness, efficiency, and reliability. The results show that the LDG scenario will be an optimal choice for AP due to the state's economic crisis, and the government should also focus on energy conservation and limit demand growth to 4.5%. While presenting a general GEP, the study presents comprehensive system performance scenarios from which planners can choose.

Suggested Citation

  • K, Karunanithi & S, Ramesh & Raja, S.P. & Rowlo, Pranav Kumar, 2024. "Generation Expansion Planning considering environmental impact and sustainable development for an Indian state using the LEAP platform," Utilities Policy, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:juipol:v:86:y:2024:i:c:s095717872300214x
    DOI: 10.1016/j.jup.2023.101702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095717872300214X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2023.101702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2019. "A multi-objective framework for long-term generation expansion planning with variable renewables," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    4. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    5. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    6. Okoye, Chiemeka Onyeka & Solyalı, Oğuz, 2017. "Optimal sizing of stand-alone photovoltaic systems in residential buildings," Energy, Elsevier, vol. 126(C), pages 573-584.
    7. Jintao Lu & Licheng Ren & Jiayuan Qiao & Siqin Yao & Wadim Strielkowski & Justas Streimikis, 2019. "Corporate Social Responsibility and Corruption: Implications for the Sustainable Energy Sector," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeganefar, Ali & Amin-Naseri, Mohammad Reza & Sheikh-El-Eslami, Mohammad Kazem, 2020. "Improvement of representative days selection in power system planning by incorporating the extreme days of the net load to take account of the variability and intermittency of renewable resources," Applied Energy, Elsevier, vol. 272(C).
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Seyed Hamed Jalalzad & Hossein Yektamoghadam & Rouzbeh Haghighi & Majid Dehghani & Amirhossein Nikoofard & Mahdi Khosravy & Tomonobu Senjyu, 2022. "A Game Theory Approach Using the TLBO Algorithm for Generation Expansion Planning by Applying Carbon Curtailment Policy," Energies, MDPI, vol. 15(3), pages 1-16, February.
    4. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    5. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    6. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    7. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    8. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    9. Keller, Victor & English, Jeffrey & Fernandez, Julian & Wade, Cameron & Fowler, McKenzie & Scholtysik, Sven & Palmer-Wilson, Kevin & Donald, James & Robertson, Bryson & Wild, Peter & Crawford, Curran , 2019. "Electrification of road transportation with utility controlled charging: A case study for British Columbia with a 93% renewable electricity target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    11. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    12. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    13. Radhanon Diewvilai & Kulyos Audomvongseree, 2022. "Optimal Loss of Load Expectation for Generation Expansion Planning Considering Fuel Unavailability," Energies, MDPI, vol. 15(21), pages 1-17, October.
    14. Pombo, Daniel Vázquez & Martinez-Rico, Jon & Marczinkowski, Hannah M., 2022. "Towards 100% renewable islands in 2040 via generation expansion planning: The case of São Vicente, Cape Verde," Applied Energy, Elsevier, vol. 315(C).
    15. Wei, Zhinong & Yang, Li & Chen, Sheng & Ma, Zhoujun & Zang, Haixiang & Fei, Youdie, 2022. "A multi-stage planning model for transitioning to low-carbon integrated electric power and natural gas systems," Energy, Elsevier, vol. 254(PC).
    16. Khorramfar, Rahman & Mallapragada, Dharik & Amin, Saurabh, 2024. "Electric-gas infrastructure planning for deep decarbonization of energy systems," Applied Energy, Elsevier, vol. 354(PA).
    17. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    18. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    19. Ihsan, Abbas & Brear, Michael J. & Jeppesen, Matthew, 2021. "Impact of operating uncertainty on the performance of distributed, hybrid, renewable power plants," Applied Energy, Elsevier, vol. 282(PB).
    20. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:86:y:2024:i:c:s095717872300214x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.