IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v114y2024ics0966692323002508.html
   My bibliography  Save this article

Shared micromobility as a first- and last-mile transit solution? Spatiotemporal insights from a novel dataset

Author

Listed:
  • Yin, Zehui
  • Rybarczyk, Greg
  • Zheng, Anran
  • Su, Lin
  • Sun, Bingrong
  • Yan, Xiang

Abstract

The first- and last-mile (FM/LM) problem is a major deterrent to public transit use. With the rise of shared micromobility options such as shared e-scooters in recent years, there is a growing interest in understanding their potential to serve as a last-mile transit solution. However, empirical data regarding the integrated use of shared micromobility and public transit have been limited so far. As a result, much is unknown regarding the spatiotemporal patterns and characteristics of shared micromobility trips serving as an FM/LM connection to transit. This paper addresses these knowledge gaps by leveraging a novel dataset (i.e., the Spin post-ride survey dataset) that records thousands of transit-connecting shared e-scooter trips in Washington DC. Specifically, we used the dataset to reveal the spatiotemporal patterns of transit-connecting shared e-scooter trips in Washington DC, resulting in some major policy insights regarding the integral use of shared e-scooters and public transit. We further leveraged the dataset to validate if and to what extent a commonly applied buffer-zone approach can infer FM/LM micromobility trips accurately. Statistical tests showed that the actual FM/LM Spin e-scooter trips differ from inferred FM/LM Spin e-scooter trips in both spatial and temporal dimensions. This indicates that the common practice of inferring FM/LM micromobility trips with a buffer-zone approach can lead to inaccurate estimates of transit-connecting micromobility trips.

Suggested Citation

  • Yin, Zehui & Rybarczyk, Greg & Zheng, Anran & Su, Lin & Sun, Bingrong & Yan, Xiang, 2024. "Shared micromobility as a first- and last-mile transit solution? Spatiotemporal insights from a novel dataset," Journal of Transport Geography, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002508
    DOI: 10.1016/j.jtrangeo.2023.103778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323002508
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    2. Foissaud, Nicolas & Gioldasis, Christos & Tamura, Shun & Christoforou, Zoi & Farhi, Nadir, 2022. "Free-floating e-scooter usage in urban areas: A spatiotemporal analysis," Journal of Transport Geography, Elsevier, vol. 100(C).
    3. Cao, Zhejing & Zhang, Xiaohu & Chua, Kelman & Yu, Honghai & Zhao, Jinhua, 2021. "E-scooter sharing to serve short-distance transit trips: A Singapore case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 177-196.
    4. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    5. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    6. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    7. Boarnet, Marlon G. & Giuliano, Genevieve & Hou, Yuting & Shin, Eun Jin, 2017. "First/last mile transit access as an equity planning issue," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 296-310.
    8. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Chen Feng & Junfeng Jiao & Haofeng Wang, 2022. "Estimating E-Scooter Traffic Flow Using Big Data to Support Planning for Micromobility," Journal of Urban Technology, Taylor & Francis Journals, vol. 29(2), pages 139-157, April.
    10. Nasri, Arefeh & Zhang, Lei, 2014. "The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 172-179.
    11. Ma, Xinwei & Ji, Yanjie & Yang, Mingyuan & Jin, Yuchuan & Tan, Xu, 2018. "Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data," Transport Policy, Elsevier, vol. 71(C), pages 57-69.
    12. Felix Schwinger & Baran Tanriverdi & Matthias Jarke, 2022. "Comparing Micromobility with Public Transportation Trips in a Data-Driven Spatio-Temporal Analysis," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    13. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    14. Shah, Nitesh R. & Guo, Jing & Han, Lee D. & Cherry, Christopher R., 2023. "Why do people take e-scooter trips? Insights on temporal and spatial usage patterns of detailed trip data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    2. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    3. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    4. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    5. Samadzad, Mahdi & Nosratzadeh, Hossein & Karami, Hossein & Karami, Ali, 2023. "What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?," Transport Policy, Elsevier, vol. 136(C), pages 70-82.
    6. Li, Shaoying & Zhuang, Caigang & Tan, Zhangzhi & Gao, Feng & Lai, Zhipeng & Wu, Zhifeng, 2021. "Inferring the trip purposes and uncovering spatio-temporal activity patterns from dockless shared bike dataset in Shenzhen, China," Journal of Transport Geography, Elsevier, vol. 91(C).
    7. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    8. Liu, Yang & Feng, Tao & Shi, Zhuangbin & He, Mingwei, 2022. "Understanding the route choice behaviour of metro-bikeshare users," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 460-475.
    9. Jin, Scarlett T. & Wang, Lei & Sui, Daniel, 2023. "How the built environment affects E-scooter sharing link flows: A machine learning approach," Journal of Transport Geography, Elsevier, vol. 112(C).
    10. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Zhu, Rui & Kondor, Dániel & Cheng, Cheng & Zhang, Xiaohu & Santi, Paolo & Wong, Man Sing & Ratti, Carlo, 2022. "Solar photovoltaic generation for charging shared electric scooters," Applied Energy, Elsevier, vol. 313(C).
    12. van Kuijk, Roy J. & de Almeida Correia, Gonçalo Homem & van Oort, Niels & van Arem, Bart, 2022. "Preferences for first and last mile shared mobility between stops and activity locations: A case study of local public transport users in Utrecht, the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 285-306.
    13. Maximilian Heumann & Tobias Kraschewski & Tim Brauner & Lukas Tilch & Michael H. Breitner, 2021. "A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    14. Tim De Ceunynck & Gert Jan Wijlhuizen & Aslak Fyhri & Regine Gerike & Dagmar Köhler & Alice Ciccone & Atze Dijkstra & Emmanuelle Dupont & Mario Cools, 2021. "Assessing the Willingness to Use Personal e-Transporters (PeTs): Results from a Cross-National Survey in Nine European Cities," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    15. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    16. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    17. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    18. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    19. Patel, Samir J. & Patel, Chetan R., 2020. "A stakeholders perspective on improving barriers in implementation of public bicycle sharing system (PBSS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 353-366.
    20. Kimpton, Anthony & Loginova, Julia & Pojani, Dorina & Bean, Richard & Sigler, Thomas & Corcoran, Jonathan, 2022. "Weather to scoot? How weather shapes shared e-scooter ridership patterns," Journal of Transport Geography, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:114:y:2024:i:c:s0966692323002508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.