IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v184y2024ics0301421523004676.html
   My bibliography  Save this article

Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS)

Author

Listed:
  • Lefvert, Adrian
  • Grönkvist, Stefan

Abstract

Bioenergy with carbon capture and storage (BECCS) can be a useful and cost-effective climate change mitigation tool but it is reliant on economic incentives. With this policy perspective article we question the ongoing discussion about the use of biomass for BECCS with basis in three points: (1) under the enhanced transparency framework under the Paris agreement, all parties to the agreement will use the same guidelines to estimate emissions by sources and removals by sinks, in which the emissions and removals in connection to cultivation of biomass are accounted for in the land-use, land-use change and forestry (LULUCF) sector, (2) adding carbon capture to existing processes may lead to a shift in products from that process rather than an increase in biomass use, and (3) BECCS requires substantial financial incentives. With basis in these points, we argue that a certification framework for BECCS that contradicts the guidelines of the Intergovernmental Panel on Climate Change (IPCC) risks unnecessarily hindering deployment of a potentially cost-effective climate change mitigation tool.

Suggested Citation

  • Lefvert, Adrian & Grönkvist, Stefan, 2024. "Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS)," Energy Policy, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523004676
    DOI: 10.1016/j.enpol.2023.113882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523004676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Grönkvist & Kenneth Möllersten & Kim Pingoud, 2006. "Equal Opportunity for Biomass in Greenhouse Gas Accounting of CO 2 Capture and Storage: A Step Towards More Cost-Effective Climate Change Mitigation Regimes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1083-1096, September.
    2. Kheshgi, Haroon S. & Prince, Roger C., 2005. "Sequestration of fermentation CO2 from ethanol production," Energy, Elsevier, vol. 30(10), pages 1865-1871.
    3. Matteo Muratori & Nico Bauer & Steven K. Rose & Marshall Wise & Vassilis Daioglou & Yiyun Cui & Etsushi Kato & Matthew Gidden & Jessica Strefler & Shinichiro Fujimori & Ronald D. Sands & Detlef P. Vuu, 2020. "EMF-33 insights on bioenergy with carbon capture and storage (BECCS)," Climatic Change, Springer, vol. 163(3), pages 1621-1637, December.
    4. Detlef P. van Vuuren & Elke Stehfest & David E. H. J. Gernaat & Maarten Berg & David L. Bijl & Harmen Sytze Boer & Vassilis Daioglou & Jonathan C. Doelman & Oreane Y. Edelenbosch & Mathijs Harmsen & A, 2018. "Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies," Nature Climate Change, Nature, vol. 8(5), pages 391-397, May.
    5. Peter Stigson & Anders Hansson & Mårten Lind, 2012. "Obstacles for CCS deployment: an analysis of discrepancies of perceptions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(6), pages 601-619, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    2. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    3. Paul Wolfram & Stephanie Weber & Kenneth Gillingham & Edgar G. Hertwich, 2021. "Pricing indirect emissions accelerates low—carbon transition of US light vehicle sector," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Hsing-Hsuan Chen & Andries F. Hof & Vassilis Daioglou & Harmen Sytze de Boer & Oreane Y. Edelenbosch & Maarten van den Berg & Kaj-Ivar van der Wijst & Detlef P. van Vuuren, 2021. "Using Decomposition Analysis to Determine the Main Contributing Factors to Carbon Neutrality across Sectors," Energies, MDPI, vol. 15(1), pages 1-18, December.
    5. Ricci, Olivia, 2012. "Providing adequate economic incentives for bioenergies with CO2 capture and geological storage," Energy Policy, Elsevier, vol. 44(C), pages 362-373.
    6. Mumbunan, Sonny & Maitri, Ni Made Rahayu, 2022. "A Review of Basic Income for Nature and Climate," OSF Preprints bre43, Center for Open Science.
    7. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2021. "Fragmented Landscape of European Policies in the Energy Sector: First-Mover Advantages," CESifo Working Paper Series 9093, CESifo.
    10. Davies, Lincoln L. & Uchitel, Kirsten & Ruple, John, 2013. "Understanding barriers to commercial-scale carbon capture and sequestration in the United States: An empirical assessment," Energy Policy, Elsevier, vol. 59(C), pages 745-761.
    11. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    12. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    13. Xia, Ao & Cheng, Jun & Lin, Richen & Ding, Lingkan & Zhou, Junhu & Cen, Kefa, 2013. "Combination of hydrogen fermentation and methanogenesis to enhance energy conversion efficiency from trehalose," Energy, Elsevier, vol. 55(C), pages 631-637.
    14. Yang Ou & Christopher Roney & Jameel Alsalam & Katherine Calvin & Jared Creason & Jae Edmonds & Allen A. Fawcett & Page Kyle & Kanishka Narayan & Patrick O’Rourke & Pralit Patel & Shaun Ragnauth & Ste, 2021. "Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Xia, Ao & Cheng, Jun & Song, Wenlu & Yu, Cong & Zhou, Junhu & Cen, Kefa, 2013. "Enhancing enzymatic saccharification of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization," Energy, Elsevier, vol. 61(C), pages 158-166.
    16. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    18. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523004676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.