IDEAS home Printed from https://ideas.repec.org/a/eee/ehbiol/v51y2023ics1570677x23000862.html
   My bibliography  Save this article

Valuing mortality attributable to present and future temperature extremes in Argentina

Author

Listed:
  • García-Witulski, Christian
  • Rabassa, Mariano Javier
  • Conte Grand, Mariana
  • Rozenberg, Julie

Abstract

This study analyzes the weather-related health damage of present and future extreme temperatures in Argentina. Focusing on mortality, short-term impacts of temperature are obtained by regressing monthly mortality rates on inter-annual monthly weather variability. For this purpose, a countrywide panel dataset at the municipal level was constructed from the universe of deaths between 2010 and 2019, and daily meteorological records from the ERA5 weather dataset. Then, NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) are used to project future mortality by 2085 under two climate scenarios. Finally, present and future mortality-related economic damages are assessed using the Value of a Statistical Life. The results show that one additional day of extreme temperatures increase all-cause mortality rates relative to mild weather and that the impact of hotter-than-average temperatures is greater in magnitude than that of colder ones. Substantial heterogeneity exists between causes of death and age groups, with older people facing greater risks, while the results for gender are inconclusive. All days of extreme cold in a year generate damage equivalent to 0.64% of GDP, while heat damage is 0.11% of GDP. The total damage by extreme temperatures adds up to 0.75% of the 2019 GDP. When future temperatures are valued, the total damage increases by an additional 1.45% under scenario RCP8.5 because the lower mortality occurring on cold days only partially offsets the increase in the number of hot days. On the contrary, if temperature changes were to be mild (i.e., under scenario RCP4.5), overall mortality would be lower at the national level and the corresponding damages would decrease by 0.02%.

Suggested Citation

  • García-Witulski, Christian & Rabassa, Mariano Javier & Conte Grand, Mariana & Rozenberg, Julie, 2023. "Valuing mortality attributable to present and future temperature extremes in Argentina," Economics & Human Biology, Elsevier, vol. 51(C).
  • Handle: RePEc:eee:ehbiol:v:51:y:2023:i:c:s1570677x23000862
    DOI: 10.1016/j.ehb.2023.101305
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1570677X23000862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ehb.2023.101305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    2. Joseph E. Aldy & W. Kip Viscusi, 2008. "Adjusting the Value of a Statistical Life for Age and Cohort Effects," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 573-581, August.
    3. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    4. Robinson, Lisa A., 2017. "Estimating the Values of Mortality Risk Reductions in Low- and Middle-Income Countries 1," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 8(2), pages 205-214, July.
    5. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    6. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    7. François Cohen & Antoine Dechezleprêtre, 2022. "Mortality, Temperature, and Public Health Provision: Evidence from Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 14(2), pages 161-192, May.
    8. Maureen Cropper & James K. Hammitt & Lisa A. Robinson, 2011. "Valuing Mortality Risk Reductions: Progress and Challenges," Annual Review of Resource Economics, Annual Reviews, vol. 3(1), pages 313-336, October.
    9. Garth Heutel & Nolan H. Miller & David Molitor, 2021. "Adaptation and the Mortality Effects of Temperature across U.S. Climate Regions," The Review of Economics and Statistics, MIT Press, vol. 103(4), pages 740-753, October.
    10. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    11. Olivier Deschênes & Enrico Moretti, 2009. "Extreme Weather Events, Mortality, and Migration," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 659-681, November.
    12. Alan Barreca & Karen Clay & Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2015. "Convergence in Adaptation to Climate Change: Evidence from High Temperatures and Mortality, 1900-2004," American Economic Review, American Economic Association, vol. 105(5), pages 247-251, May.
    13. Glenn C. Blomquist, 2004. "Self-Protection and Averting Behavior, Values of Statistical Lives, and Benefit Cost Analysis of Environmental Policy," Review of Economics of the Household, Springer, vol. 2(1), pages 89-110, March.
    14. Hammitt James K. & Robinson Lisa A, 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, De Gruyter, vol. 2(1), pages 1-29, January.
    15. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    16. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    17. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    18. Picasso, Emilio & Conte Grand, Mariana, 2019. "The Value of the Risk to Life in the Context of Crime," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 10(2), pages 178-205, July.
    19. Tamma Carleton & Amir Jina & Michael Delgado & Michael Greenstone & Trevor Houser & Solomon Hsiang & Andrew Hultgren & Robert E Kopp & Kelly E McCusker & Ishan Nath & James Rising & Ashwin Rode & Hee , 2022. "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits [Distributive Politics and Economic Growth]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(4), pages 2037-2105.
    20. Viscusi, W. Kip & Masterman, Clayton J., 2017. "Income Elasticities and Global Values of a Statistical Life," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 8(2), pages 226-250, July.
    21. Kaiser, R. & Le Tertre, A. & Schwartz, J. & Gotway, C.A. & Daley, W.R. & Rubin, C.H., 2007. "The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality," American Journal of Public Health, American Public Health Association, vol. 97(S1), pages 158-162.
    22. Mishan, E J, 1971. "Evaluation of Life and Limb: A Theoretical Approach," Journal of Political Economy, University of Chicago Press, vol. 79(4), pages 687-705, July-Aug..
    23. repec:reg:rpubli:282 is not listed on IDEAS
    24. Brouwer, Roy, 2000. "Environmental value transfer: state of the art and future prospects," Ecological Economics, Elsevier, vol. 32(1), pages 137-152, January.
    25. Helo Sarmiento, Juliana, 2023. "Into the tropics: Temperature, mortality, and access to health care in Colombia," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    26. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2018. "Misfortunes never come singly: Consecutive weather shocks and mortality in Russia," Economics & Human Biology, Elsevier, vol. 31(C), pages 249-258.
    27. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2015. "Will Adaptation to Climate Change be Slow and Costly? Evidence from High Temperatures and Mortality, 1900-2004," Working Papers BFI-2015-02, Becker Friedman Institute for Research In Economics.
    28. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariano Javier Rabassa & Christian Garcia-Witulski & Grand Mariana Conte & Julie Rozenberg, 2022. "Valuing mortality attributable to present and future extreme temperatures in Argentina," Asociación Argentina de Economía Política: Working Papers 4590, Asociación Argentina de Economía Política.
    2. Hajdu, Tamás & Hajdu, Gábor, 2023. "Climate change and the mortality of the unborn," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    3. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2018. "Misfortunes never come singly: Consecutive weather shocks and mortality in Russia," Economics & Human Biology, Elsevier, vol. 31(C), pages 249-258.
    4. Cuong Viet Nguyen & Manh‐Hung Nguyen & Toan Truong Nguyen, 2023. "The impact of cold waves and heat waves on mortality: Evidence from a lower middle‐income country," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1220-1243, June.
    5. Giuliano Masiero & Fabrizio Mazzonna & Michael Santarossa, 2022. "The effect of absolute versus relative temperature on health and the role of social care," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1228-1248, June.
    6. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    7. Helo Sarmiento, Juliana, 2023. "Into the tropics: Temperature, mortality, and access to health care in Colombia," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    8. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    9. Yu, Xiumei & Lei, Xiaoyan & Wang, Min, 2019. "Temperature effects on mortality and household adaptation: Evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 195-212.
    10. Agarwal, Sumit & Qin, Yu & Shi, Luwen & Wei, Guoxu & Zhu, Hongjia, 2021. "Impact of temperature on morbidity: New evidence from China," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    11. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    12. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    13. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    14. Li, Xue & Smyth, Russell & Xin, Guangyi & Yao, Yao, 2023. "Warmer temperatures and energy poverty: Evidence from Chinese households," Energy Economics, Elsevier, vol. 120(C).
    15. Olivier Deschenes, 2022. "The impact of climate change on mortality in the United States: Benefits and costs of adaptation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1227-1249, August.
    16. Je-Liang Liou, 2019. "Effect of Income Heterogeneity on Valuation of Mortality Risk in Taiwan: An Application of Unconditional Quantile Regression Method," IJERPH, MDPI, vol. 16(9), pages 1-15, May.
    17. Nguyen, Cuong Viet & Nguyen, Manh-Hung & Nguyen, Toan Truong, 2022. "Climate Change, Cold Waves, Heat Waves, and Mortality: Evidence from a Lower Middle-Income Country," GLO Discussion Paper Series 1034, Global Labor Organization (GLO).
    18. Robinson, Lisa A. & Hammitt, James K., 2013. "Skills of the trade: valuing health risk reductions in benefit-cost analysis," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 4(1), pages 107-130, March.
    19. Henry A. Roman & James K. Hammitt & Tyra L. Walsh & David M. Stieb, 2012. "Expert Elicitation of the Value per Statistical Life in an Air Pollution Context," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2133-2151, December.
    20. Andersson, Henrik, 2013. "Consistency in preferences for road safety: An analysis of precautionary and stated behavior," Research in Transportation Economics, Elsevier, vol. 43(1), pages 41-49.

    More about this item

    Keywords

    Temperature; Climate change; Mortality; Value of a Statistical Life; Argentina;
    All these keywords.

    JEL classification:

    • I15 - Health, Education, and Welfare - - Health - - - Health and Economic Development
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ehbiol:v:51:y:2023:i:c:s1570677x23000862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622964 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.