IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v216y2024ics0921800923002835.html
   My bibliography  Save this article

The role of physical constraints on production

Author

Listed:
  • Dzhumashev, Ratbek

Abstract

We consider the physical constraints of the production process by connecting the actual amount (volume) of physical output to its mass. To achieve this, we introduce a function that evaluates the mass of physical objects such as resources and output. Through the mass function, we demonstrate that the marginal product of resource inputs is less than the ratio of the mass density of resource inputs to that of the final products. This ratio's boundedness implies that the marginal resource product has an upper limit, meaning that the Inada condition for resources is not valid. This restriction on the marginal product of resource input has significant implications for long-term growth and environmental sustainability. It indicates that the growth of total physical output is only feasible with more resource input and a potentially higher level of pollution.

Suggested Citation

  • Dzhumashev, Ratbek, 2024. "The role of physical constraints on production," Ecological Economics, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:ecolec:v:216:y:2024:i:c:s0921800923002835
    DOI: 10.1016/j.ecolecon.2023.108020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923002835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.108020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Avi J. Cohen, 2003. "Retrospectives: Whatever Happened to the Cambridge Capital Theory Controversies?," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 199-214, Winter.
    2. Steve Hatfield-Dodds & Heinz Schandl & Philip D. Adams & Timothy M. Baynes & Thomas S. Brinsmead & Brett A. Bryan & Francis H. S. Chiew & Paul W. Graham & Mike Grundy & Tom Harwood & Rebecca McCallum , 2016. "Australia is 'free to choose' economic growth and falling environmental pressures," Nature, Nature, vol. 534(7607), pages 1-2, June.
    3. Ozkaya, Ata, 2021. "Inada conditions asymptotically transform production function into the Cobb–Douglas," Economics Letters, Elsevier, vol. 201(C).
    4. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    5. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    6. Kander, Astrid, 2005. "Baumol's disease and dematerialization of the economy," Ecological Economics, Elsevier, vol. 55(1), pages 119-130, October.
    7. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    8. John Hartwick, 1977. "Intergenerational Equity and the Investment of Rents from Exhaustible Resources in a Two Sector Model," Working Paper 281, Economics Department, Queen's University.
    9. T. W. Swan, 1956. "ECONOMIC GROWTH and CAPITAL ACCUMULATION," The Economic Record, The Economic Society of Australia, vol. 32(2), pages 334-361, November.
    10. Hartwick, John M, 1977. "Intergenerational Equity and the Investing of Rents from Exhaustible Resources," American Economic Review, American Economic Association, vol. 67(5), pages 972-974, December.
    11. Bithas, K. & Kalimeris, P., 2013. "Re-estimating the decoupling effect: Is there an actual transition towards a less energy-intensive economy?," Energy, Elsevier, vol. 51(C), pages 78-84.
    12. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    13. Takashi Kamihigashi, 2006. "Almost sure convergence to zero in stochastic growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 29(1), pages 231-237, September.
    14. Kostas Bithas & Panos Kalimeris, 2017. "The Material Intensity of Growth: Implications from the Human Scale of Production," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(3), pages 1011-1029, September.
    15. Stefan baumgärtner, 2004. "The Inada Conditions for Material Resource Inputs Reconsidered," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(3), pages 307-322, November.
    16. Goenka, Aditya & Nguyen, Manh-Hung, 2020. "General existence of competitive equilibrium in the growth model with an endogenous labor–leisure choice," Journal of Mathematical Economics, Elsevier, vol. 91(C), pages 90-98.
    17. R. M. Solow, 1974. "Intergenerational Equity and Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 29-45.
    18. Daly, Herman E., 1997. "Georgescu-Roegen versus Solow/Stiglitz," Ecological Economics, Elsevier, vol. 22(3), pages 261-266, September.
    19. Montoya, Marco Antonio & Allegretti, Gabriela & Bertussi, Luís Antônio Sleimann & Talamini, Edson, 2023. "Domestic and foreign decoupling of economic growth and water consumption and its driving factors in the Brazilian economy," Ecological Economics, Elsevier, vol. 206(C).
    20. Harold Hotelling, 1931. "The Economics of Exhaustible Resources," Journal of Political Economy, University of Chicago Press, vol. 39(2), pages 137-137.
    21. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    22. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    23. Dasgupta, Partha, 1993. "Natural resources in an age of substitutability," Handbook of Natural Resource and Energy Economics, in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 3, chapter 23, pages 1111-1130, Elsevier.
    24. Herring, Horace, 2006. "Energy efficiency—a critical view," Energy, Elsevier, vol. 31(1), pages 10-20.
    25. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    26. Ken-ichi Inada, 1963. "On a Two-Sector Model of Economic Growth: Comments and a Generalization," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 30(2), pages 119-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mircea Saveanu, 2014. "Sustainability as a Resource Distribution Constraint," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 10(2), pages 139-151, April.
    2. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    3. Maciej Malaczewski, 2018. "Natural Resources As An Energy Source In A Simple Economic Growth Model," Bulletin of Economic Research, Wiley Blackwell, vol. 70(4), pages 362-380, October.
    4. Daniele Schilirò, 2019. "Sustainability, Innovation, and Efficiency: A Key Relationship," Palgrave Studies in Impact Finance, in: Magdalena Ziolo & Bruno S. Sergi (ed.), Financing Sustainable Development, chapter 0, pages 83-102, Palgrave Macmillan.
    5. Dorothée Charlier & Florian Fizaine, 2020. "Does Becoming Richer Lead to a Reduction in Natural Resource Consumption? An Empirical Refutation of the Kuznets Material Curve," Working Papers 2020.05, FAERE - French Association of Environmental and Resource Economists.
    6. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    7. Giuseppe Cornelli, 2017. "Cosa s’intende per sostenibilità economica? Riflessione sul significato di sistema economicamente sostenibile/What is meant by economic ustainability? Reflection on the definition of today’s concept o," IRCrES Working Paper 201710, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    8. Fondo Sikod & Gadom Djal-Gadom & et Armand Luc Fotuè Totouom, 2013. "Soutenabilité Economique d'une Ressource Epuisable: Cas du Pétrole Tchadien," African Development Review, African Development Bank, vol. 25(3), pages 344-357, September.
    9. Humberto Llavador & John E. Roemer & Joaquim Silvestre, 2013. "Should we sustain? And if so, sustain what? Consumption or the quality of life?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 30, pages 639-665, Edward Elgar Publishing.
    10. Antony, Jürgen & Klarl, Torben, 2023. "Subsistence consumption and natural resource depletion: Can resource-rich low-income countries realize sustainable consumption paths?," Journal of Macroeconomics, Elsevier, vol. 77(C).
    11. Edward B. Barbier & Joanne C. Burgess, 2021. "Sustainable Use of the Environment, Planetary Boundaries and Market Power," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    12. Martinet, Vincent, 2007. "A step beside the maximin path: Can we sustain the economy by following Hartwick's investment rule?," Ecological Economics, Elsevier, vol. 64(1), pages 103-108, October.
    13. Vincent Martinet, 2007. "Maximizing minimal rights for sustainability: a viability approach," Working Papers hal-04139217, HAL.
    14. Beatrix Gaitan & Terry Roe, 2012. "International Trade, Exhaustible-Resource Abundance and Economic Growth," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(1), pages 72-93, January.
    15. Johnson Kakeu, 2016. "Exhaustibility and Risk as Asset Class Dimensions: A Social Investor Approach to Capital-Resource Economies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(4), pages 677-695, December.
    16. Asheim, Geir B. & Buchholz, Wolfgang & Hartwick, John M. & Mitra, Tapan & Withagen, Cees, 2007. "Constant savings rates and quasi-arithmetic population growth under exhaustible resource constraints," Journal of Environmental Economics and Management, Elsevier, vol. 53(2), pages 213-229, March.
    17. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    18. Andre, Francisco J. & Cerda, Emilio, 2005. "On natural resource substitution," Resources Policy, Elsevier, vol. 30(4), pages 233-246, December.
    19. Stefan baumgärtner, 2004. "The Inada Conditions for Material Resource Inputs Reconsidered," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(3), pages 307-322, November.
    20. Bazhanov, Andrei V., 2022. "Extraction path and sustainability," Resources Policy, Elsevier, vol. 76(C).

    More about this item

    Keywords

    Inada conditions; Conservation of mass; Production function; Natural resources;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:216:y:2024:i:c:s0921800923002835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.