IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i7p3567-3579.html
   My bibliography  Save this article

Multilevel modeling using spatial processes: Application to the Singapore housing market

Author

Listed:
  • Gelfand, Alan E.
  • Banerjee, Sudipto
  • Sirmans, C.F.
  • Tu, Yong
  • Eng Ong, Seow

Abstract

No abstract is available for this item.

Suggested Citation

  • Gelfand, Alan E. & Banerjee, Sudipto & Sirmans, C.F. & Tu, Yong & Eng Ong, Seow, 2007. "Multilevel modeling using spatial processes: Application to the Singapore housing market," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3567-3579, April.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3567-3579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00430-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hao, 2004. "Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 250-261, January.
    2. Alan E. Gelfand & Mark D. Ecker & John R. Knight & C. F. Sirmans, 2004. "The Dynamics of Location in Home Price," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 149-166, September.
    3. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    4. Hua Sun & Yong Tu & Shi-Ming Yu, 2005. "A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 31(2), pages 155-187, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmund Zolnik, 2020. "A longitudinal analysis of the effect of public rail infrastructure on proximate residential property transactions," Urban Studies, Urban Studies Journal Limited, vol. 57(8), pages 1620-1641, June.
    2. Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
    3. Eduardo Pérez-Molina, 2022. "Exploring a multilevel approach with spatial effects to model housing price in San José, Costa Rica," Environment and Planning B, , vol. 49(3), pages 987-1004, March.
    4. Paul Harris & Bruno Lanfranco & Binbin Lu & Alexis Comber, 2020. "Influence of Geographical Effects in Hedonic Pricing Models for Grass-Fed Cattle in Uruguay," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    5. Widemberg S. Nobre & Alexandra M. Schmidt & João B. M. Pereira, 2021. "On the Effects of Spatial Confounding in Hierarchical Models," International Statistical Review, International Statistical Institute, vol. 89(2), pages 302-322, August.
    6. Riccardo, Borgoni & Alessandra, Michelangeli & Nicola, Pontarollo, 2016. "How Does a City Benefit from Culture? Evidence from Milan," Working Papers 335, University of Milano-Bicocca, Department of Economics, revised 16 May 2016.
    7. Congdon, Peter, 2009. "Modelling the impact of socioeconomic structure on spatial health outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3047-3056, June.
    8. Pierrette Chagneau & Frédéric Mortier & Nicolas Picard & Jean-Noël Bacro, 2011. "A Hierarchical Bayesian Model for Spatial Prediction of Multivariate Non-Gaussian Random Fields," Biometrics, The International Biometric Society, vol. 67(1), pages 97-105, March.
    9. Yigong Hu & Binbin Lu & Yong Ge & Guanpeng Dong, 2022. "Uncovering spatial heterogeneity in real estate prices via combined hierarchical linear model and geographically weighted regression," Environment and Planning B, , vol. 49(6), pages 1715-1740, July.
    10. Fernando BRUNA & Isabel NEIRA & Marta PORTELA, 2019. "Horizontal And Vertical Contexts On Europeans’ Well-Being," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 19(2), pages 37-56.
    11. Nan Liu, 2021. "Market buoyancy, information transparency and pricing strategy in the Scottish housing market," Urban Studies, Urban Studies Journal Limited, vol. 58(16), pages 3388-3406, December.
    12. Liu, Nan & Zhao, Yuan & Ge, Jiaqi, 2018. "Do renters skimp on energy efficiency during economic recessions? Evidence from Northeast Scotland," Energy, Elsevier, vol. 165(PA), pages 164-175.
    13. Zeileis, Achim & Hornik, Kurt & Murrell, Paul, 2009. "Escaping RGBland: Selecting colors for statistical graphics," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3259-3270, July.
    14. Nan Liu & Deborah Roberts, 2012. "Do Incomers Pay More for Rural Housing?," Environment and Planning A, , vol. 44(8), pages 1986-2005, August.
    15. Aoife K. Hurley & James Sweeney, 2024. "Irish Property Price Estimation Using A Flexible Geo-spatial Smoothing Approach: What is the Impact of an Address?," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 355-393, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.
    2. Tiziana Caliman & Enrico di Bella, 2011. "Spatial Autoregressive Models for House Price Dynamics in Italy," Economics Bulletin, AccessEcon, vol. 31(2), pages 1837-1855.
    3. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    4. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    5. Hua Sun & Yong Tu & Shi-Ming Yu, 2005. "A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 31(2), pages 155-187, September.
    6. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    7. Jorge Chica-Olmo & Rafael Cano-Guervos & Mario Chica-Rivas, 2019. "Estimation of Housing Price Variations Using Spatio-Temporal Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    8. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    9. Zhang, Tonglin, 2017. "An example of inconsistent MLE of spatial covariance parameters under increasing domain asymptotics," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 108-113.
    10. Girard, Didier A., 2016. "Asymptotic near-efficiency of the “Gibbs-energy and empirical-variance” estimating functions for fitting Matérn models — I: Densely sampled processes," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 191-197.
    11. S. Wong & C. Yiu & K. Chau, 2013. "Trading Volume-Induced Spatial Autocorrelation in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 46(4), pages 596-608, May.
    12. Orçun Moralı & Neslihan Yılmaz, 2022. "An Analysis of Spatial Dependence in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 64(1), pages 93-115, January.
    13. Ilir Nase & Jim Berry & Alastair Adair, 2016. "Impact of quality-led design on real estate value: a spatiotemporal analysis of city centre apartments," Journal of Property Research, Taylor & Francis Journals, vol. 33(4), pages 309-331, October.
    14. Daniel Melser & Robert J. Hill, 2019. "Residential Real Estate, Risk, Return and Diversification: Some Empirical Evidence," The Journal of Real Estate Finance and Economics, Springer, vol. 59(1), pages 111-146, July.
    15. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    16. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    17. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    18. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    19. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.
    20. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:7:p:3567-3579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.