IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v93y2012icp556-563.html
   My bibliography  Save this article

Reducing fuel consumption through modular vehicle architectures

Author

Listed:
  • Carvalho, Irene
  • Baier, Thomas
  • Simoes, Ricardo
  • Silva, Arlindo

Abstract

By identifying energy waste streams in vehicles fuel consumption and introducing the concept of lean driving systems, a technological gap for reducing fuel consumption was identified. This paper proposes a solution to overcome this gap, through a modular vehicle architecture aligned with driving patterns. It does not address detailed technological solutions; instead it models the potential effects in fuel consumption through a modular concept of a vehicle and quantifies their dependence on vehicle design parameters (manifesting as the vehicle mass) and user behavior parameters (driving patterns manifesting as the use of a modular car in lighter and heavier mode, in urban and highway cycles). Modularity has been functionally applied in automotive industry as manufacture and assembly management strategies; here it is thought as a product development strategy for flexibility in use, driven by environmental concerns and enabled by social behaviors. The authors argue this concept is a step forward in combining technological solutions and social behavior, of which eco-driving is a vivid example, and potentially evolutionary to a lean, more sustainable, driving culture.

Suggested Citation

  • Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:556-563
    DOI: 10.1016/j.apenergy.2011.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, I. & Leimbach, M. & Jaeger, C.C., 2007. "International passenger transport and climate change: A sector analysis in car demand and associated CO2 emissions from 2000 to 2050," Energy Policy, Elsevier, vol. 35(12), pages 6332-6345, December.
    2. Fontana, G. & Galloni, E., 2009. "Variable valve timing for fuel economy improvement in a small spark-ignition engine," Applied Energy, Elsevier, vol. 86(1), pages 96-105, January.
    3. Barkenbus, Jack N., 2010. "Eco-driving: An overlooked climate change initiative," Energy Policy, Elsevier, vol. 38(2), pages 762-769, February.
    4. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    5. Dissanayake, Dilum & Morikawa, Takayuki, 2010. "Investigating household vehicle ownership, mode choice and trip sharing decisions using a combined revealed preference/stated preference Nested Logit model: case study in Bangkok Metropolitan Region," Journal of Transport Geography, Elsevier, vol. 18(3), pages 402-410.
    6. Saboohi, Y. & Farzaneh, H., 2009. "Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption," Applied Energy, Elsevier, vol. 86(10), pages 1925-1932, October.
    7. Dowlatabadi, Hadi & Lave, Lester B & Russell, Armistead G, 1996. "A free lunch at higher CAFE? A review of economic, environmental and social benefits," Energy Policy, Elsevier, vol. 24(3), pages 253-264, March.
    8. Jimenez-Espadafor, Francisco José & Marín, Juan José Ruiz & Becerra Villanueva, José A. & García, Miguel Torres & Trujillo, Elisa Carvajal & Ojeda, Francisco José Florencio, 2011. "Infantry mobility hybrid electric vehicle performance analysis and design," Applied Energy, Elsevier, vol. 88(8), pages 2641-2652, August.
    9. Kudoh, Yuki & Kondo, Yoshinori & Matsuhashi, Keisuke & Kobayashi, Shinji & Moriguchi, Yuichi, 2004. "Current status of actual fuel-consumptions of petrol-fuelled passenger vehicles in Japan," Applied Energy, Elsevier, vol. 79(3), pages 291-308, November.
    10. Yang, Hai & Huang, Hai-Jun, 1999. "Carpooling and congestion pricing in a multilane highway with high-occupancy-vehicle lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(2), pages 139-155, February.
    11. Saerens, B. & Vandersteen, J. & Persoons, T. & Swevers, J. & Diehl, M. & Van den Bulck, E., 2009. "Minimization of the fuel consumption of a gasoline engine using dynamic optimization," Applied Energy, Elsevier, vol. 86(9), pages 1582-1588, September.
    12. Du, J.D. & Han, W.J. & Peng, Y.H. & Gu, C.C., 2010. "Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China," Energy, Elsevier, vol. 35(12), pages 4671-4678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene Carvalho & Ricardo Simoes & Arlindo Silva, 2018. "Applying the Theory of Inventive Problem Solving (TRIZ) to identify design opportunities for improved passenger car eco-effectiveness," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 907-932, August.
    2. Celalettin Yuce & Fatih Karpat & Nurettin Yavuz & Gökhan Sendeniz, 2014. "A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure," Sustainability, MDPI, vol. 6(7), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartolozzi, I. & Rizzi, F. & Frey, M., 2013. "Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in Tuscany, Italy," Applied Energy, Elsevier, vol. 101(C), pages 103-111.
    2. Alam, Md. Saniul & McNabola, Aonghus, 2014. "A critical review and assessment of Eco-Driving policy & technology: Benefits & limitations," Transport Policy, Elsevier, vol. 35(C), pages 42-49.
    3. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
    4. Achour, H. & Carton, J.G. & Olabi, A.G., 2011. "Estimating vehicle emissions from road transport, case study: Dublin City," Applied Energy, Elsevier, vol. 88(5), pages 1957-1964, May.
    5. Sina, Naser & Nasiri, Sayyad & Karkhaneh, Vahid, 2015. "Effects of resistive loads and tire inflation pressure on tire power losses and CO2 emissions in real-world conditions," Applied Energy, Elsevier, vol. 157(C), pages 974-983.
    6. Zeng, Yuan & Tan, Xianchun & Gu, Baihe & Wang, Yi & Xu, Baoguang, 2016. "Greenhouse gas emissions of motor vehicles in Chinese cities and the implication for China’s mitigation targets," Applied Energy, Elsevier, vol. 184(C), pages 1016-1025.
    7. Hsu, Chia-Yu & Yang, Chin-Sheng & Yu, Liang-Chih & Lin, Chi-Fang & Yao, Hsiu-Hsen & Chen, Duan-Yu & Robert Lai, K. & Chang, Pei-Chann, 2015. "Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system," International Journal of Production Economics, Elsevier, vol. 164(C), pages 454-461.
    8. Barla, Philippe & Gilbert-Gonthier, Mathieu & Lopez Castro, Marco Antonio & Miranda-Moreno, Luis, 2017. "Eco-driving training and fuel consumption: Impact, heterogeneity and sustainability," Energy Economics, Elsevier, vol. 62(C), pages 187-194.
    9. Irene Carvalho & Ricardo Simoes & Arlindo Silva, 2018. "Applying the Theory of Inventive Problem Solving (TRIZ) to identify design opportunities for improved passenger car eco-effectiveness," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 907-932, August.
    10. Barbosa, Samuel Borges & Ferreira, Marcelo Gitirana Gomes & Nickel, Elton Moura & Cruz, Jorge Alcides & Forcellini, Fernando Antônio & Garcia, Jéssica & Guerra, José Baltazar Salgueirinho Osório de An, 2017. "Multi-criteria analysis model to evaluate transport systems: An application in Florianópolis, Brazil," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 1-13.
    11. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    12. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    13. Ahmed, Sumayyah & Sanguinetti, Angela, 2015. "OBDEnergy: Making Metrics Meaningful in Eco-driving Feedback," Institute of Transportation Studies, Working Paper Series qt0x73t2jw, Institute of Transportation Studies, UC Davis.
    14. Pietro Stabile & Federico Ballo & Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2023. "Eco-Driving Strategy Implementation for Ultra-Efficient Lightweight Electric Vehicles in Realistic Driving Scenarios," Energies, MDPI, vol. 16(3), pages 1-19, January.
    15. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    16. Yuan, Weichang & Frey, H. Christopher, 2020. "Potential for metro rail energy savings and emissions reduction via eco-driving," Applied Energy, Elsevier, vol. 268(C).
    17. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    18. Osorio, Julian D. & Rivera-Alvarez, Alejandro, 2018. "Efficiency enhancement of spark-ignition engines using a Continuous Variable Valve Timing system for load control," Energy, Elsevier, vol. 161(C), pages 649-662.
    19. Zha, Yunfei & He, Shunquan & Meng, Xianfeng & Zuo, Hongyan & Zhao, Xiaohuan, 2023. "Heat dissipation performance research between drop contact and immersion contact of lithium-ion battery cooling," Energy, Elsevier, vol. 279(C).
    20. Mattia Rapa & Laura Gobbi & Roberto Ruggieri, 2020. "Environmental and Economic Sustainability of Electric Vehicles: Life Cycle Assessment and Life Cycle Costing Evaluation of Electricity Sources," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:556-563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.