IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v292y2024ics0378377424000064.html
   My bibliography  Save this article

Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse

Author

Listed:
  • Xin, Lang
  • Tang, Maosong
  • Zhang, Lei
  • Huang, Weixiong
  • Wang, Xingpeng
  • Gao, Yang

Abstract

To reveal the mechanisms of saline-fresh water rotation irrigation that affect the leaf ultrastructure and photosynthetic characteristics of tomato plants and to optimize the strategy of saline water irrigation of greenhouse tomatoes, a two-season tomato experiment with four treatments of saline-fresh water rotation irrigation was conducted in a greenhouse in southern Xinjiang. The four treatments consisted of rotation irrigation with four times saline-fresh water (W1), rotation irrigation with two times saline water and two times fresh water (W2), rotation irrigation with two times fresh water, four times saline water, and two times fresh water (W3), and freshwater irrigation as a control (CK). The three rotation patterns had the same amount of saline water and fresh water, but the rotational interval was different. The results indicated that the saline-alkali stress introduced by saline water significantly reduced the gas exchange parameters of tomato leaves and water use efficiency at the leaf scale, and both stomatal and non-stomatal factors played a key role in limiting leaf gas exchange. The chloroplast granular lamellae structure was disrupted in tomato leaves treated with W1 and W2. Compared with CK, W1 and W2 decreased leaf chlorophyll content by 4.59% and 10.89%, net photosynthetic rate by 26.82% and 40.11%, and yield by 60.62% and 67.63%, respectively. In contrast, W3 presented a relatively intact mesophyll cell structure and relatively high chlorophyll content and photosynthetic efficiency. In W3 treatment, no significant differences were found in the number of fruits per plant (only increased by 8.16% and the yield by 4.03%), while with better quality compared with CK. The results suggested that tomato growth and yield were neither poor nor detrimental when rotated with saline water during the flowering and fruiting stage-fruit expansion stage and freshwater irrigation during other growth stages. W3 can be used as a saline-fresh water rotation pattern for tomato production in greenhouses in arid and saline areas.

Suggested Citation

  • Xin, Lang & Tang, Maosong & Zhang, Lei & Huang, Weixiong & Wang, Xingpeng & Gao, Yang, 2024. "Effects of saline-fresh water rotation irrigation on photosynthetic characteristics and leaf ultrastructure of tomato plants in a greenhouse," Agricultural Water Management, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000064
    DOI: 10.1016/j.agwat.2024.108671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424000064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mansour, Elsayed & Moustafa, Ehab S.A. & Abdul-Hamid, Mohamed I.E. & Ash-shormillesy, Salwa M.A.I. & Merwad, Abdel-Rahman M.A. & Wafa, Hany A. & Igartua, Ernesto, 2021. "Field responses of barley genotypes across a salinity gradient in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Li, Jianshe & Gao, Yanming & Zhang, Xueyan & Tian, Ping & Li, Juan & Tian, Yongqiang, 2019. "Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality," Agricultural Water Management, Elsevier, vol. 213(C), pages 521-533.
    4. Chen, Weiping & Hou, Zhenan & Wu, Laosheng & Liang, Yongchao & Wei, Changzhou, 2010. "Evaluating salinity distribution in soil irrigated with saline water in arid regions of northwest China," Agricultural Water Management, Elsevier, vol. 97(12), pages 2001-2008, November.
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Li, Hao & Hou, Xuemin & Bertin, Nadia & Ding, Risheng & Du, Taisheng, 2023. "Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaodong & Tian, Wei & Zheng, Wende & Shah, Sadiq & Li, Jianshe & Wang, Xiaozhuo & Zhang, Xueyan, 2023. "Quantitative relationships between salty water irrigation and tomato yield, quality, and irrigation water use efficiency: A meta-analysis," Agricultural Water Management, Elsevier, vol. 280(C).
    2. Li, Jingang & Chen, Jing & He, Pingru & Chen, Dan & Dai, Xiaoping & Jin, Qiu & Su, Xiaoyue, 2022. "The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia," Agricultural Water Management, Elsevier, vol. 274(C).
    3. Yu, Qihua & Wang, Feng & Zou, Minzhong & Ji, Shasha & Li, Mingfa & Kang, Shaozhong, 2024. "Quantifying the spatial water salinity threshold of saline water irrigation by applying distributed WAVES model," Agricultural Systems, Elsevier, vol. 214(C).
    4. Santos, Berta de los & Medina, Eduardo & Brenes, Manuel & Aguado, Ana & García, Pedro & Romero, Concepción, 2020. "Chemical composition of table olive wastewater and its relationship with the bio-fortifying capacity of tomato (Solanum lycopersicum L.) plants," Agricultural Water Management, Elsevier, vol. 227(C).
    5. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    6. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    8. Li, Jingang & He, Pingru & Chen, Jing & Hamad, Amar Ali Adam & Dai, Xiaoping & Jin, Qiu & Ding, Siyu, 2023. "Tomato performance and changes in soil chemistry in response to salinity and Na/Ca ratio of irrigation water," Agricultural Water Management, Elsevier, vol. 285(C).
    9. Wenjuan Chen & Mingsi Li & Qinglin Li, 2023. "The Influence of Winter Irrigation Amount on the Characteristics of Water and Salt Distribution and WUE in Different Saline-Alkali Farmlands in Northwest China," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    10. Zhou, Beibei & Liang, Chaofan & Chen, Xiaopeng & Ye, Sitan & Peng, Yao & Yang, Lu & Duan, Manli & Wang, Xingpeng, 2022. "Magnetically-treated brackish water affects soil water-salt distribution and the growth of cotton with film mulch drip irrigation in Xinjiang, China," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Wang, Ruoshui & Kang, Yaohu & Wan, Shuqin & Hu, Wei & Liu, Shiping & Jiang, Shufang & Liu, Shuhui, 2012. "Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area," Agricultural Water Management, Elsevier, vol. 110(C), pages 109-117.
    12. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2022. "Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Jiang, Donglin & Ao, Chang & Bailey, Ryan T. & Zeng, Wenzhi & Huang, Jiesheng, 2022. "Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt," Agricultural Water Management, Elsevier, vol. 272(C).
    14. Cao, Yune & Tian, Yongqiang & Gao, Lihong & Chen, Qingyun, 2016. "Attenuating the negative effects of irrigation with saline water on cucumber (Cucumis sativus L.) by application of straw biological-reactor," Agricultural Water Management, Elsevier, vol. 163(C), pages 169-179.
    15. Bai, Jianduo & Wang, Nan & Hu, Bifeng & Feng, Chunhui & Wang, Yuzhen & Peng, Jie & Shi, Zhou, 2023. "Integrating multisource information to delineate oasis farmland salinity management zones in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Li, Wenjia & Gao, Yanming & Tian, Yongqiang & Li, Jianshe, 2022. "Double-root-grafting enhances irrigation water efficiency and reduces the adverse effects of saline water on tomato yields under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Yang, Pengju & Hu, Hongchang & Tian, Fuqiang & Zhang, Zhi & Dai, Chao, 2016. "Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China," Agricultural Water Management, Elsevier, vol. 171(C), pages 21-30.
    18. Masoud Pourgholam-Amiji & Mojtaba Khoshravesh & Muhammad Mohsin Waqas, 2020. "Study Of Combined Magnetized Water And Salinity On Soil Permeability In North Of Iran," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(2), pages 69-73, June.
    19. Cao, Yune & Gao, Yanming & Li, Jianshe & Tian, Yongqiang, 2019. "Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.