IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004869.html
   My bibliography  Save this article

Quantifying and assessing nitrogen sources and transport in a megacity water supply watershed: Insights for effective non-point source pollution management with mixSIAR and SWAT models

Author

Listed:
  • Hao, Zhuo
  • Shi, Yuanyuan
  • Zhan, Xiaoying
  • Yu, Bowei
  • Fan, Qing
  • Zhu, Jie
  • Liu, Lianhua
  • Zhang, Qingwen
  • Zhao, Guangxiang

Abstract

The expansion and intensification of human activities have resulted in excessive nitrogen (N) in rivers, causing worldwide concern. To effectively manage agricultural non-point source pollution and ensure a safe drinking water supply in watersheds, it is crucial to trace and quantify the primary sources and spatial distribution patterns of N. In response to the challenge of unclear sources and agricultural non-point source pollution, this study utilised the Bayesian isotope mixing model and Soil and Water Assessment Toolmodel to identify the dominant nitrate sources and transformation processes. These models were employed to quantify N retention by the mainstream and tributaries in the Bai River Basin, which directly impacts the safety of drinking water in Beijing. Total N (TN) concentrations in the Yunzhou Reservoir (4.22 ± 0.04 mg.L˗1) and Miyun Reservoir (2.88 ± 0.62 mg.L˗1) inlets in autumn and winter were V class (2 mg.L˗1) category as per GB 3838–2002 standards. This implies higher risks of eutrophication and algal blooms exceeding the standards at individual points and seasons in the Bai River. Fertilisers were the main nitrate source in the Bai River Basin, contributing 44.6% during the dry season and 62.9% during the wet season, suggesting that nitrate is more susceptible to leaching and runoff during rainy periods. Rainfall was not a major contributor, with only 3.2% and 2.9% originating from the Hebei and Beijing areas of the Bai River, respectively. Annually, the Bai River Basin exports loads of approximately 629.3 t.a˗1 of TN and 433.7 t.a˗1 of organic N (Org-N) from the Bai River Basin land to the river. The TN and Org-N loads at the final destination in the Miyun Reservoir were 521.3 t.a˗1 and 100.3 t.a˗1, respectively. Of the exported TN and Org-N, 17.16% and 76.87%, respectively, were retained in the river network. Consequently, N transformation occurred in the Bai River, with nitrification–denitrification being particularly dominant. Nitrification was more evident in the nitrate-enriched river.

Suggested Citation

  • Hao, Zhuo & Shi, Yuanyuan & Zhan, Xiaoying & Yu, Bowei & Fan, Qing & Zhu, Jie & Liu, Lianhua & Zhang, Qingwen & Zhao, Guangxiang, 2024. "Quantifying and assessing nitrogen sources and transport in a megacity water supply watershed: Insights for effective non-point source pollution management with mixSIAR and SWAT models," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004869
    DOI: 10.1016/j.agwat.2023.108621
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hou, Xiaoning & Xu, Zan & Tang, Caihong & Zhang, Shanghong, 2021. "Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Shuqin Jin & Bin Zhang & Bi Wu & Dongmei Han & Yu Hu & Chenchen Ren & Chuanzhen Zhang & Xun Wei & Yan Wu & Arthur P. J. Mol & Stefan Reis & Baojing Gu & Jie Chen, 2021. "Decoupling livestock and crop production at the household level in China," Nature Sustainability, Nature, vol. 4(1), pages 48-55, January.
    3. Amin, M.G. Mostofa & Karsten, Heather D. & Veith, Tamie L. & Beegle, Douglas B. & Kleinman, Peter J., 2018. "Conservation dairy farming impact on water quality in a karst watershed in northeastern US," Agricultural Systems, Elsevier, vol. 165(C), pages 187-196.
    4. Andrew C Parnell & Richard Inger & Stuart Bearhop & Andrew L Jackson, 2010. "Source Partitioning Using Stable Isotopes: Coping with Too Much Variation," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-5, March.
    5. Zhou, Yanqing & Gao, Xiaodong & Wang, Jiaxin & Robinson, Brett H. & Zhao, Xining, 2021. "Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Wang, Jiaxin & He, Xinlin & Gong, Ping & Heng, Tong & Zhao, Danqi & Wang, Chunxia & Chen, Quan & Wei, Jie & Lin, Ping & Yang, Guang, 2024. "Response of fragrant pear quality and water productivity to lateral depth and irrigation amount," Agricultural Water Management, Elsevier, vol. 292(C).
    3. Zhe Zhao & Xiangzheng Deng & Fan Zhang & Zhihui Li & Wenjiao Shi & Zhigang Sun & Xuezhen Zhang, 2022. "Scenario Analysis of Livestock Carrying Capacity Risk in Farmland from the Perspective of Planting and Breeding Balance in Northeast China," Land, MDPI, vol. 11(3), pages 1-13, March.
    4. Wang, Zhong-Jun & Yue, Fu-Jun & Wang, Yu-Chun & Qin, Cai-Qing & Ding, Hu & Xue, Li-Li & Li, Si-Liang, 2022. "The effect of heavy rainfall events on nitrogen patterns in agricultural surface and underground streams and the implications for karst water quality protection," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Changming Cao & Na Li & Weifeng Yue & Lijun Wu & Xinyi Cao & Yuanzheng Zhai, 2022. "Analysis of the Interaction between Lake and Groundwater Based on Water–Salt Balance Method and Stable Isotopic Characteristics," IJERPH, MDPI, vol. 19(19), pages 1-16, September.
    6. Fang, Guozhu & Zhang, Xiaoheng & Qi, Chunjie, 2021. "Are Integrated Crop-Livestock Systems More Technical Efficiency? Evidence from Small Farmers in China," 2021 Conference, August 17-31, 2021, Virtual 315129, International Association of Agricultural Economists.
    7. Xiao Chen & Zeyuan He & Huarui Wu & Changji Wen & Tao Tao & Xinyu Yang & You Tang & Hongliang Guo & Helong Yu, 2023. "Multi-Objective Optimization of Integrated Crop–Livestock Systems: Exploring Resource Allocation Based on Emergy Evaluation," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    8. Ouping Deng & Sitong Wang & Jiangyou Ran & Shuai Huang & Xiuming Zhang & Jiakun Duan & Lin Zhang & Yongqiu Xia & Stefan Reis & Jiayu Xu & Jianming Xu & Wim Vries & Mark A. Sutton & Baojing Gu, 2024. "Managing urban development could halve nitrogen pollution in China," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Hengfei Song & Liangjie Xin & Xiubin Li & Xue Wang & Yufeng He & Wen Song, 2022. "Can Livestock Raising Alleviate Farmland Abandonment?—Evidence from China," Land, MDPI, vol. 11(8), pages 1-18, July.
    10. Gao, Jingbo & Li, Zhiqin & Chen, Zhujun & Zhou, Yang & Liu, Weiguo & Wang, Lei & Zhou, Jianbin, 2021. "Deterioration of groundwater quality along an increasing intensive land use pattern in a small catchment," Agricultural Water Management, Elsevier, vol. 253(C).
    11. Wenchen SONG & Xiaojuan TONG & Jinsong ZHANG & Ping MENG & Jun LI, 2017. "Autotrophic and heterotrophic components of soil respiration caused by rhizosphere priming effects in a plantation," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(7), pages 295-299.
    12. Pacella, Stephen R. & Lebreton, Benoit & Richard, Pierre & Phillips, Donald & DeWitt, Theodore H. & Niquil, Nathalie, 2013. "Incorporation of diet information derived from Bayesian stable isotope mixing models into mass-balanced marine ecosystem models: A case study from the Marennes-Oléron Estuary, France," Ecological Modelling, Elsevier, vol. 267(C), pages 127-137.
    13. Xue, Jingyuan & Na, Qin & Zhang, Xuyang & Grieneisen, Michael L. & Lai, Quan & Zhang, Minghua, 2023. "CalBMP, a web-based modeling tool for evaluating pesticide offsite movement and best management practice scenarios in California agricultural land," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Jianxing Chen & Xuesong Gao & Yanyan Zhang & Petri Penttinen & Qi Wang & Jing Ling & Ting Lan & Dinghua Ou & Yang Li, 2023. "Analysis on Coupling Coordination Degree for Cropland and Livestock from 2000 to 2020 in China," Agriculture, MDPI, vol. 13(7), pages 1-20, June.
    15. Liu, Yingbo & Yuan, Yusen & Zhang, Liang & Du, Taisheng, 2024. "Exploring the differences of moisture traceability methods based on MixSIAR model under different nitrogen applications of wheat in the Arid Region of Northwest China," Agricultural Water Management, Elsevier, vol. 294(C).
    16. Zhou, Yanqing & Gao, Xiaodong & Wang, Jiaxin & Robinson, Brett H. & Zhao, Xining, 2021. "Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 255(C).
    17. Kou, Xinyue & Ding, Junjun & Li, Yuzhong & Li, Qiaozhen & Mao, Lili & Xu, Chunying & Zheng, Qian & Zhuang, Shan, 2021. "Tracing nitrate sources in the groundwater of an intensive agricultural region," Agricultural Water Management, Elsevier, vol. 250(C).
    18. Alex S J Wyatt & Anya M Waite & Stuart Humphries, 2010. "Variability in Isotope Discrimination Factors in Coral Reef Fishes: Implications for Diet and Food Web Reconstruction," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-10, October.
    19. Xie, Zheyu & Zhang, Yujing & Zhang, Zhenyu & Huang, Jinliang, 2023. "Nitrate removal mechanism in riparian groundwater in an intensified agricultural catchment," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Liu, Min & Xu, Wenli & Zhang, Hangyu & Chen, Huang & Bie, Qiang & Han, Guodong & Yu, Xiaohua, 2022. "Livestock production, greenhouse gas emissions, air pollution, and grassland conservation: Quasi-natural experimental evidence," MPRA Paper 115704, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.