IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v291y2024ics0378377423004808.html
   My bibliography  Save this article

Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China

Author

Listed:
  • Mao, Wei
  • Zhu, Yan
  • Huang, Shuang
  • Han, Xudong
  • Sun, Guanfang
  • Ye, Ming
  • Yang, Jinzhong

Abstract

Accurate estimation of seepage losses in large-scale canal systems and identification of their impact factors are important for improving water conveyance efficiency in agricultural districts. However, seepage losses can vary widely across different regions and periods, making it difficult to obtain a complete understanding of the variation process based solely on local scale studies. In addition, although there are currently some complex numerical models available for large-canal systems in agricultural districts, they are rarely used in practice due to their complexity. This study evaluated the regional-scale spatio-temporal seepage processes of the Zaohuo canal, a 55 km’s sub-main earthen canal located in the Hetao Irrigation District, China, under current and future water-saving conditions using MODFLOW-SWR. In addition, a pre-processing tool was developed to process spatial geographic data and spatial topology between different canals. Furthermore, the sensitivity of different influencing factors, such as the permeability of canal bed sediments, surface and groundwater level, and local lining, was also investigated. The optimal relationship between lining areas when partial lining is used and seepage losses was also investigated. The calculated water conveyance efficiency coefficient is 0.7871, which fits well with the reported results and proves the reliability of the simulation. In addition, it was found that seepage losses are most sensitive to the surface water level of the canal, followed by the permeability of canal bed sediments and then the groundwater level. Moreover, new hybrid lining can reduce the seepage losses by about 92.02%, but ongoing maintenance is vital. When lining the key portion of the canal, the seepage losses will be significantly reduced with the increase of lining area. The seepage losses reduction factor increases by 5.8% for every 1 × 105 m2 increase in lining area when the lining area is below 1 × 106 m2, while the effect is not significant when that limitation is exceeded. This study can support decision-making for water-saving projects in large water conveyance canals in regional-scale agriculture districts.

Suggested Citation

  • Mao, Wei & Zhu, Yan & Huang, Shuang & Han, Xudong & Sun, Guanfang & Ye, Ming & Yang, Jinzhong, 2024. "Assessment of spatial and temporal seepage losses in large canal systems under current and future water-saving conditions: A case study in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004808
    DOI: 10.1016/j.agwat.2023.108615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salmasi, Farzin & Abraham, John, 2020. "Predicting seepage from unlined earthen channels using the finite element method and multi variable nonlinear regression," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Alam, M. M. & Bhutta, M. N., 2004. "Comparative evaluation of canal seepage investigation techniques," Agricultural Water Management, Elsevier, vol. 66(1), pages 65-76, April.
    3. Seyed Mehdi Seyed Hoshiyar & Nader Pirmoradian & Afshin Ashrafzadeh & Atefeh Parvaresh Rizi, 2021. "Performance Assessment of a Water Delivery Canal to Improve Agricultural Water Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2487-2501, June.
    4. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Srivastava, P.K. & Singh, Raj Mohan, 2016. "GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 37-47.
    7. Kamrani, Kazem & Roozbahani, Abbas & Hashemy Shahdany, Seied Mehdy, 2020. "Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus," Agricultural Water Management, Elsevier, vol. 239(C).
    8. Meredith, Elizabeth & Blais, Nicole, 2019. "Quantifying irrigation recharge sources using groundwater modeling," Agricultural Water Management, Elsevier, vol. 214(C), pages 9-16.
    9. Kinzli, Kristoph-Dietrich & Martinez, Matthew & Oad, Ramchand & Prior, Adam & Gensler, David, 2010. "Using an ADCP to determine canal seepage loss in an irrigation district," Agricultural Water Management, Elsevier, vol. 97(6), pages 801-810, June.
    10. Hashemy Shahdany, S. Mehdy & Firoozfar, Alireza & Maestre, J.M. & Mallakpour, Iman & Taghvaeian, Saleh & Karimi, Poolad, 2018. "Operational performance improvements in irrigation canals to overcome groundwater overexploitation," Agricultural Water Management, Elsevier, vol. 204(C), pages 234-246.
    11. Mahmoud Mohammad Rezapour Tabari & Mohsen Mazak Mari, 2016. "The Integrated Approach of Simulation and Optimization in Determining the Optimum Dimensions of Canal for Seepage Control," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1271-1292, February.
    12. Cunha, Henrique & Loureiro, Dália & Sousa, Gonçalo & Covas, Dídia & Alegre, Helena, 2019. "A comprehensive water balance methodology for collective irrigation systems," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    13. Zhang, Meijing & Migliaccio, Kati W. & Her, Young Gu & Schaffer, Bruce, 2019. "A simulation model for estimating root zone saturation indices of agricultural crops in a shallow aquifer and canal system," Agricultural Water Management, Elsevier, vol. 220(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, A.A. Rehman & Gates, Timothy K. & Scalia, Joseph, 2023. "Characterization and control of irrigation canal seepage losses: A review and perspective focused on field data," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Jolfan, Mohsen Hosseini & Hashemy Shahdany, S. Mehdy & Javadi, Saman & Milan, Sami Ghordoyee & Neshat, Aminreza & Berndtsson, Ronny & Tork, Hamed, 2023. "Modernization in agricultural water distribution system for aquifer storage and recovery – A case study," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Afsaneh Kaghazchi & Seied Mehdy Hashemy Shahdany & Alireza Firoozfar, 2022. "Prioritization of agricultural water distribution operating systems based on the sustainable development indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 23-40, February.
    4. Barkhordari, Soroush & Hashemy Shahdany, Seied Mehdy, 2021. "Developing a smart operating system for fairly distribution of irrigation water, based on social, economic, and environmental considerations," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Avargani, Habib Karimi & Hashemy Shahdany, S. Mehdy & Kamrani, Kazem & Maestre, Jose, M. & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid, 2022. "Prioritization of surface water distribution in irrigation districts to mitigate crop yield reduction during water scarcity," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Hassani, Yousef & Hashemy Shahdany, Seied Mehdy & Maestre, J.M. & Zahraie, Banafsheh & Ghorbani, Mohammad & Henneberry, Shida Rastegari & Kulshreshtha, Suren N., 2019. "An economic-operational framework for optimum agricultural water distribution in irrigation districts without water marketing," Agricultural Water Management, Elsevier, vol. 221(C), pages 348-361.
    7. Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
    8. Liao, Xiangcheng & Mahmoud, Ali & Hu, Tiesong & Wang, Jinglin, 2022. "A novel irrigation canal scheduling model adaptable to the spatial-temporal variability of water conveyance loss," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Fatemeh Bayat & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2022. "Performance Evaluation of Agricultural Surface Water Distribution Systems Based on Water-food-energy Nexus and Using AHP-Entropy-WASPAS Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4697-4720, September.
    10. Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
    11. Karimi Avargani, Habib & Hashemy Shahdany, S. Mehdy & Hashemi Garmdareh, S. Ebrahim & Liaghat, Abdolmajid & Guan, Guanghua & Behzadi, Farhad & Milan, Sami Ghordoyee & Berndtsson, Ronny, 2023. "Operational loss estimation in irrigation canals by integrating hydraulic simulation and crop growth modeling," Agricultural Water Management, Elsevier, vol. 288(C).
    12. Kaghazchi, Afsaneh & Hashemy Shahdany, S. Mehdy & Roozbahani, Abbas, 2021. "Simulation and evaluation of agricultural water distribution and delivery systems with a Hybrid Bayesian network model," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    15. Majid Ali & Muhammad Naveed Anjum & Donghui Shangguan & Safdar Hussain, 2022. "Water, Energy, and Food Nexus in Pakistan: Parametric and Non-Parametric Analysis," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    16. Najihah Dor & Syafalni Syafalni & Ismail Abustan & Mohd Rahman & Mohd Nazri & Roslanzairi Mostafa & Lakam Mejus, 2011. "Verification of Surface-Groundwater Connectivity in an Irrigation Canal Using Geophysical, Water Balance and Stable Isotope Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2837-2853, September.
    17. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    18. Salmasi, Farzin & Abraham, John, 2020. "Predicting seepage from unlined earthen channels using the finite element method and multi variable nonlinear regression," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
    20. Dou, Xu & Shi, Haibin & Li, Ruiping & Miao, Qingfeng & Yan, Jianwen & Tian, Feng & Wang, Bo, 2022. "Simulation and evaluation of soil water and salt transport under controlled subsurface drainage using HYDRUS-2D model," Agricultural Water Management, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.