IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v145y2014icp163-170.html
   My bibliography  Save this article

Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment

Author

Listed:
  • Connor, Jeffery D.
  • Kandulu, John M.
  • Bark, Rosalind H.

Abstract

This article presents an econometric analysis of irrigation commodity area and revenue responses to varying commodity prices, water availability and climate conditions for the second half of a decade long drought in the Murray–Darling Basin, Australia. We find statistically significant evidence of irrigation area decline with reductions in water allocations and irrigation revenue shrinking with area irrigated. Results also indicate hotter drier weather conditions experienced in the drought effected crops differently: some crop revenues suffered, while higher evapotranspiration and yield potential appeared to support higher revenue outcomes for other crops. Comparison revealed that marginal revenue changes in response to water allocations estimated are much less than those implicit in other economic assessments of water scarcity impacts for the same basin that used different methods. We find that triangulation of results between methods provides confidence in consistent results and reveals possible avenues for future research and methodological development.

Suggested Citation

  • Connor, Jeffery D. & Kandulu, John M. & Bark, Rosalind H., 2014. "Irrigation revenue loss in Murray–Darling Basin drought: An econometric assessment," Agricultural Water Management, Elsevier, vol. 145(C), pages 163-170.
  • Handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:163-170
    DOI: 10.1016/j.agwat.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414001449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorite, I.J. & Mateos, L. & Orgaz, F. & Fereres, E., 2007. "Assessing deficit irrigation strategies at the level of an irrigation district," Agricultural Water Management, Elsevier, vol. 91(1-3), pages 51-60, July.
    2. Tauer, Loren W., 2006. "When to Get In and Out of Dairy Farming: A Real Option Analysis," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 35(2), pages 1-9, October.
    3. Connor, Jeffery D. & Schwabe, Kurt & King, Darran & Knapp, Keith, 2012. "Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation," Ecological Economics, Elsevier, vol. 77(C), pages 149-157.
    4. Andrew C. Harvey, 1990. "The Econometric Analysis of Time Series, 2nd Edition," MIT Press Books, The MIT Press, edition 2, volume 1, number 026208189x, December.
    5. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    6. Qureshi, Muhammad Ejaz & Connor, Jeffery D. & Kirby, Mac & Mainuddin, Mohammed, 2007. "Economic assessment of acquiring water for environmental flows in the Murray Basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-21.
    7. Wittwer, Glyn & Griffith, Marnie, 2011. "Modelling drought and recovery in the southern Murray-Darling basin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(3), pages 1-18, September.
    8. Arriaza, M. & Gomez-Limon, J. A., 2003. "Comparative performance of selected mathematical programming models," Agricultural Systems, Elsevier, vol. 77(2), pages 155-171, August.
    9. Goodman, D. Jay, 2000. "More Reservoirs Or Transfers? A Computable General Equilibrium Analysis Of Projected Water Shortages In The Arkansas River Basin," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-16, December.
    10. S. Niggol Seo & Robert Mendelsohn, 2008. "Measuring impacts and adaptations to climate change: a structural Ricardian model of African livestock management-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 151-165, March.
    11. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    12. Peck, Dannele E. & Adams, Richard M., 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 1-18.
    13. Javier Calatrava & Alberto Garrido, 2005. "Modelling water markets under uncertain water supply," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 32(2), pages 119-142, June.
    14. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    15. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    16. Iglesias, Eva & Garrido, Alberto & Gomez-Ramos, Almudena, 2003. "Evaluation of drought management in irrigated areas," Agricultural Economics, Blackwell, vol. 29(2), pages 211-229, October.
    17. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    18. Schwabe, Kurt A. & Connor, Jeffery D., 2012. "Drought Issues in Semi-arid and Arid Environments," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 27(3), pages 1-5.
    19. Loch, Adam & Bjornlund, Henning & Wheeler, Sarah & Connor, Jeff, 2012. "Allocation trade in Australia: a qualitative understanding or irrigator motives and behaviour," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 56(1), pages 1-19, March.
    20. Dannele E. Peck & Richard M. Adams, 2010. "Farm-level impacts of prolonged drought: is a multiyear event more than the sum of its parts?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(1), pages 43-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaune, Alexander & Werner, Micha & Rodríguez, Erasmo & Karimi, Poolad & de Fraiture, Charlotte, 2017. "A novel tool to assess available hydrological information and the occurrence of sub-optimal water allocation decisions in large irrigation districts," Agricultural Water Management, Elsevier, vol. 191(C), pages 229-238.
    2. King, Darran A. & Meyer, Wayne S. & Connor, Jeffery D., 2019. "Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Bigelow, Daniel P. & Zhang, Hongliang, 2018. "Supplemental irrigation water rights and climate change adaptation," Ecological Economics, Elsevier, vol. 154(C), pages 156-167.
    4. Reca, Juan & García-Manzano, Alfonso & Martínez, Juan, 2015. "Optimal pumping scheduling model considering reservoir evaporation," Agricultural Water Management, Elsevier, vol. 148(C), pages 250-257.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gil, Marina & Garrido, Alberto & Gómez-Ramos, Almudena, 2011. "Economic analysis of drought risk: An application for irrigated agriculture in Spain," Agricultural Water Management, Elsevier, vol. 98(5), pages 823-833, March.
    2. Simon de Bonviller & Alec Zuo & Sarah Ann Wheeler, 2019. "Is there evidence of insider trading in Australian water markets?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(2), pages 307-327, April.
    3. Pourzand, Farnaz & Noy, Ilan & Sağlam, Yiğit, 2020. "Droughts and farms’ financial performance: a farm‐level study in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    4. Birthal, Pratap S. & Negi, Digvijay S. & Khan, Md. Tajuddin & Agarwal, Shaily, 2015. "Is Indian agriculture becoming resilient to droughts? Evidence from rice production systems," Food Policy, Elsevier, vol. 56(C), pages 1-12.
    5. Pourzand, Farnaz & Noy, Ilan & Sağlam, Yiğit, 2019. "Droughts and farms’ financial performance in New Zealand: A micro farm level study," Working Paper Series 8159, Victoria University of Wellington, School of Economics and Finance.
    6. Zhou, Li & Turvey, Calum G., 2014. "Climate change, adaptation and China's grain production," China Economic Review, Elsevier, vol. 28(C), pages 72-89.
    7. Farnaz Pourzand & Ilan Noy & Yigit Saglam, 2019. "Droughts and farms' financial performance in New Zealand: a micro farm-level study," CESifo Working Paper Series 7633, CESifo.
    8. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    9. King, Darran A. & Meyer, Wayne S. & Connor, Jeffery D., 2019. "Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    10. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.
    11. Bastian, Christopher T. & Gray, Stephen T. & Peck, Dannele E. & Ritten, John P. & Hansen, Kristiana M. & Krall, James M. & Paisley, Steven I., 2011. "The Nature of Climate Science for the Rocky Mountain West: Implications for Economists Trying to Help Agriculture Adapt," Western Economics Forum, Western Agricultural Economics Association, vol. 10(2), pages 1-10.
    12. Elwin G. Smith & Mark E. Eiswerth & Terrence S. Veeman, 2010. "Current and Emerging Water Issues in Agriculture: An Overview," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(s1), pages 403-409, December.
    13. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
    14. Ancev, Tiho, 2015. "The role of the commonwealth environmental water holder in annual water allocation markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    15. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    16. Kahil, Mohamed Taher & Connor, Jeffery D. & Albiac, Jose, 2015. "Efficient water management policies for irrigation adaptation to climate change in Southern Europe," Ecological Economics, Elsevier, vol. 120(C), pages 226-233.
    17. Majeed, Fahd & Khanna, Madhu & Miao, Ruiqing & Blanc, Elena & Hudiburg, Tara & DeLucia, Evan, 2020. "Designing payments for GHG mitigation to induce low carbon bioenergy production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304394, Agricultural and Applied Economics Association.
    18. Zhang, Wendong & Na, Chen & Irwin, Elena G. & Martin, Jay F. & Gebremariam, Seyoum Y. & Gildow, Marie, 2014. "A Coupled Spatial Economic-Hydrological Model of Cropland Transitions and Environmental Impacts," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170599, Agricultural and Applied Economics Association.
    19. Yogi Vidyattama & Leonie J. Pearson & Robert Tanton & Itismita Mohanty, 2017. "Assessing adaptive capacity during the drought period in the Murray–Darling Basin," Asia-Pacific Journal of Regional Science, Springer, vol. 1(1), pages 155-170, April.
    20. Wrenn, Douglas H. & Klaiber, Allen & Newburn, David, 2018. "Price Based Policies for Managing Residential Development and Impacts on Water Quality," 2018 Annual Meeting, August 5-7, Washington, D.C. 274029, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:163-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.