IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v63y2009i1p43-51.html
   My bibliography  Save this article

Second‐order analysis of inhomogeneous spatio‐temporal point process data

Author

Listed:
  • Edith Gabriel
  • Peter J. Diggle

Abstract

Second‐order methods provide a natural starting point for the analysis of spatial point process data. In this note we extend to the spatio‐temporal setting a method proposed by Baddeley et al. [Statistica Neerlandica (2000) Vol. 54, pp. 329–350] for inhomogeneous spatial point process data, and apply the resulting estimator to data on the spatio‐temporal distribution of human Campylobacter infections in an area of north‐west England.

Suggested Citation

  • Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
  • Handle: RePEc:bla:stanee:v:63:y:2009:i:1:p:43-51
    DOI: 10.1111/j.1467-9574.2008.00407.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9574.2008.00407.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9574.2008.00407.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    2. Martin Kulldorff & Ulf Hjalmars, 1999. "The Knox Method and Other Tests for Space-Time Interaction," Biometrics, The International Biometric Society, vol. 55(2), pages 544-552, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    2. Michaela Prokešová & Jiří Dvořák, 2014. "Statistics for Inhomogeneous Space-Time Shot-Noise Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 433-449, June.
    3. Jesper Møller & Heidi S. Christensen & Francisco Cuevas-Pacheco & Andreas D. Christoffersen, 2021. "Structured Space-Sphere Point Processes and K-Functions," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 569-591, June.
    4. Jesper Møller & Farzaneh Safavimanesh & Jakob Gulddahl Rasmussen, 2016. "The cylindrical $K$-function and Poisson line cluster point processes," Biometrika, Biometrika Trust, vol. 103(4), pages 937-954.
    5. D'Angelo, Nicoletta & Adelfio, Giada & Mateu, Jorge, 2023. "Locally weighted minimum contrast estimation for spatio-temporal log-Gaussian Cox processes," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    6. Ghorbani, Mohammad & Vafaei, Nafiseh & Dvořák, Jiří & Myllymäki, Mari, 2021. "Testing the first-order separability hypothesis for spatio-temporal point patterns," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. O. Cronie & M. N. M. Van Lieshout, 2015. "A J -function for Inhomogeneous Spatio-temporal Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 562-579, June.
    8. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    9. Arbia, G. & Espa, G. & Giuliani, D. & Mazzitelli, A., 2012. "Clusters of firms in an inhomogeneous space: The high-tech industries in Milan," Economic Modelling, Elsevier, vol. 29(1), pages 3-11.
    10. C. Comas & F. J. Rodriguez-Cortes & J. Mateu, 2015. "Second-order analysis of anisotropic spatiotemporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 49-66, February.
    11. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.
    12. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    13. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Mazzitelli, Andrea, 2010. "Detecting the existence of space-time clustering of firms," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 311-323, September.
    2. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    3. Carl P. Schmertmann, 2015. "Adjusting for population shifts and covariates in space–time interaction tests," Biometrics, The International Biometric Society, vol. 71(3), pages 714-720, September.
    4. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    5. Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
    6. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    7. Kateřina Koňasová & Jiří Dvořák, 2021. "Stochastic Reconstruction for Inhomogeneous Point Patterns," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 527-547, June.
    8. Redenbach, Claudia & Särkkä, Aila, 2013. "Parameter estimation for growth interaction processes using spatio-temporal information," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 672-683.
    9. Saltré, F. & Chuine, I. & Brewer, S. & Gaucherel, C., 2009. "A phenomenological model without dispersal kernel to model species migration," Ecological Modelling, Elsevier, vol. 220(24), pages 3546-3554.
    10. Elvan Ceyhan, 2009. "Class‐specific tests of spatial segregation based on nearest neighbor contingency tables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 149-182, May.
    11. Sami Ullah & Hanita Daud & Sarat C. Dass & Hadi Fanaee-T & Husnul Kausarian & Alamgir, 2020. "Space-Time Clustering Characteristics of Tuberculosis in Khyber Pakhtunkhwa Province, Pakistan, 2015–2019," IJERPH, MDPI, vol. 17(4), pages 1-10, February.
    12. Yongtao Guan, 2008. "Variance estimation for statistics computed from inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 175-190, February.
    13. Jesper Møller & Håkon Toftaker, 2014. "Geometric Anisotropic Spatial Point Pattern Analysis and Cox Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 414-435, June.
    14. Thais Paiva & Renato Assunção & Taynãna Simões, 2015. "Prospective space–time surveillance with cumulative surfaces for geographical identification of the emerging cluster," Computational Statistics, Springer, vol. 30(2), pages 419-440, June.
    15. Eric Marcon & Florence Puech, 2012. "A typology of distance-based measures of spatial concentration," Working Papers halshs-00679993, HAL.
    16. Jiří Dvořák & Michaela Prokešová, 2016. "Parameter Estimation for Inhomogeneous Space-Time Shot-Noise Cox Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 939-961, December.
    17. Yehua Li & Yongtao Guan, 2014. "Functional Principal Component Analysis of Spatiotemporal Point Processes With Applications in Disease Surveillance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1205-1215, September.
    18. Nicoletta D’Angelo & Giada Adelfio & Jorge Mateu, 2023. "Local inhomogeneous second-order characteristics for spatio-temporal point processes occurring on linear networks," Statistical Papers, Springer, vol. 64(3), pages 779-805, June.
    19. Ian W. Renner & David I. Warton, 2013. "Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology," Biometrics, The International Biometric Society, vol. 69(1), pages 274-281, March.
    20. Deng, C. & Waagepetersen, R.P. & Wang, M. & Guan, Y., 2018. "A fast spectral quasi-likelihood approach for spatial point processes," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 59-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:63:y:2009:i:1:p:43-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.