IDEAS home Printed from https://ideas.repec.org/a/bla/growch/v55y2024i1ne12701.html
   My bibliography  Save this article

Climate change and cooling equity: Spatial dynamics of vulnerable populations

Author

Listed:
  • Sungyop Kim
  • Dohyung Kim

Abstract

Climate change disproportionately affects low‐income and minority populations. This study identified vulnerable populations to extreme heat, focusing on home air conditioning. State and municipal laws and regulations usually consider home air conditioning an amenity rather than a requirement for habitability such as heat, water, and electricity. Using the historical census data and the American Housing Survey data, this study identified the vulnerable populations to extreme heat and their spatial dynamic in Los Angeles County, CA. This study found that low‐income minority populations are more likely to live without home air conditioning, and they are more likely to be exposed to extreme heat in the coming years if their residential location patterns continue. Changing spatial patterns of low‐income and minority populations need to be incorporated into urban and regional planning for climate change. State regulations and municipal codes should require air conditioning as a habitability requirement for cooling equity. Also, cooling stations that provide immediate relief for those without home air conditioning need strategic placements based on the locational concentration of the vulnerable populations.

Suggested Citation

  • Sungyop Kim & Dohyung Kim, 2024. "Climate change and cooling equity: Spatial dynamics of vulnerable populations," Growth and Change, Wiley Blackwell, vol. 55(1), March.
  • Handle: RePEc:bla:growch:v:55:y:2024:i:1:n:e12701
    DOI: 10.1111/grow.12701
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/grow.12701
    Download Restriction: no

    File URL: https://libkey.io/10.1111/grow.12701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leo Kavanagh & Duncan Lee & Gwilym Pryce, 2016. "Is Poverty Decentralizing? Quantifying Uncertainty in the Decentralization of Urban Poverty," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1286-1298, November.
    2. Ding, Lei & Hwang, Jackelyn & Divringi, Eileen, 2016. "Gentrification and residential mobility in Philadelphia," Regional Science and Urban Economics, Elsevier, vol. 61(C), pages 38-51.
    3. Kollmann, Trevor & Marsiglio, Simone & Suardi, Sandy, 2018. "Racial segregation in the United States since the Great Depression: A dynamic segregation approach," Journal of Housing Economics, Elsevier, vol. 40(C), pages 95-116.
    4. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    5. Dana Habeeb & Jason Vargo & Brian Stone, 2015. "Rising heat wave trends in large US cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1651-1665, April.
    6. Tingting Chen & John D. Radke & Wei Lang & Xun Li, 2020. "Environment resilience and public health: Assessing healthcare's vulnerability to climate change in the San Francisco Bay Area," Growth and Change, Wiley Blackwell, vol. 51(2), pages 607-625, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Lei Ding & Jackelyn Hwang, 2020. "Effects of Gentrification on Homeowners: Evidence from a Natural Experiment," Working Papers 20-16, Federal Reserve Bank of Philadelphia.
    3. Ingrid Gould Ellen & Stephen L. Ross, 2018. "Race and the City," Working Papers 2018-022, Human Capital and Economic Opportunity Working Group.
    4. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    5. Wang, Junbo & Ma, Zhenyu & Fan, Xiayang, 2023. "We are all in the same boat: The welfare and carbon abatement effects of the EU carbon border adjustment mechanism," MPRA Paper 118978, University Library of Munich, Germany.
    6. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    7. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    8. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    9. Chen, Li & Gao, Jiti & Vahid, Farshid, 2022. "Global temperatures and greenhouse gases: A common features approach," Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Marion Lestienne & Boris Vannière & Thomas Curt & Isabelle Jouffroy-Bapicot & Christelle Hély, 2022. "Climate-driven Mediterranean fire hazard assessments for 2020–2100 on the light of past millennial variability," Climatic Change, Springer, vol. 170(1), pages 1-18, January.
    12. Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
    13. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    14. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    15. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    16. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    17. Ma, L. & Ahuja, L.R. & Islam, A. & Trout, T.J. & Saseendran, S.A. & Malone, R.W., 2017. "Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 88-98.
    18. Juying Wang & Feng Guan & Ting Li & Can Wang & Qianqian Han & Bin Yu, 2015. "Optimization of the Waterbus Operation Plan Considering Carbon Emissions: The Case of Zhoushan City," Sustainability, MDPI, vol. 7(8), pages 1-18, August.
    19. Shadi O. Tehrani & Shuling J. Wu & Jennifer D. Roberts, 2019. "The Color of Health: Residential Segregation, Light Rail Transit Developments, and Gentrification in the United States," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    20. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:growch:v:55:y:2024:i:1:n:e12701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0017-4815 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.