IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3010-3022.html
   My bibliography  Save this article

Additive subdistribution hazards regression for competing risks data in case‐cohort studies

Author

Listed:
  • Adane F. Wogu
  • Haolin Li
  • Shanshan Zhao
  • Hazel B. Nichols
  • Jianwen Cai

Abstract

In survival data analysis, a competing risk is an event whose occurrence precludes or alters the chance of the occurrence of the primary event of interest. In large cohort studies with long‐term follow‐up, there are often competing risks. Further, if the event of interest is rare in such large studies, the case‐cohort study design is widely used to reduce the cost and achieve the same efficiency as a cohort study. The conventional additive hazards modeling for competing risks data in case‐cohort studies involves the cause‐specific hazard function, under which direct assessment of covariate effects on the cumulative incidence function, or the subdistribution, is not possible. In this paper, we consider an additive hazard model for the subdistribution of a competing risk in case‐cohort studies. We propose estimating equations based on inverse probability weighting methods for the estimation of the model parameters. Consistency and asymptotic normality of the proposed estimators are established. The performance of the proposed methods in finite samples is examined through simulation studies and the proposed approach is applied to a case‐cohort dataset from the Sister Study.

Suggested Citation

  • Adane F. Wogu & Haolin Li & Shanshan Zhao & Hazel B. Nichols & Jianwen Cai, 2023. "Additive subdistribution hazards regression for competing risks data in case‐cohort studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3010-3022, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3010-3022
    DOI: 10.1111/biom.13821
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13821
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    2. Peng He & Frank Eriksson & Thomas H. Scheike & Mei-Jie Zhang, 2016. "A Proportional Hazards Regression Model for the Subdistribution with Covariates-adjusted Censoring Weight for Competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 103-122, March.
    3. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    4. Wanxing Li & Xiaoming Xue & Yonghong Long, 2017. "An additive subdistribution hazard model for competing risks data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(23), pages 11667-11687, December.
    5. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    6. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    7. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    8. Guosheng Yin & Jianwen Cai, 2004. "Additive hazards model with multivariate failure time data," Biometrika, Biometrika Trust, vol. 91(4), pages 801-818, December.
    9. Bingqing Zhou & Aurelien Latouche & Vanderson Rocha & Jason Fine, 2011. "Competing Risks Regression for Stratified Data," Biometrics, The International Biometric Society, vol. 67(2), pages 661-670, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    2. Soyoung Kim & Yayun Xu & Mei‐Jie Zhang & Kwang‐Woo Ahn, 2020. "Stratified proportional subdistribution hazards model with covariate‐adjusted censoring weight for case‐cohort studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1222-1242, December.
    3. Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
    4. Teng Fei & John Hanfelt & Limin Peng, 2023. "Evaluating the association between latent classes and competing risks outcomes with multiphenotype data," Biometrics, The International Biometric Society, vol. 79(1), pages 488-501, March.
    5. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    6. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    7. David D. Hanagal, 2021. "RETRACTED ARTICLE: Positive Stable Shared Frailty Models Based on Additive Hazards," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 431-453, December.
    8. Ling Lan & Dipankar Bandyopadhyay & Somnath Datta, 2017. "Non-parametric regression in clustered multistate current status data with informative cluster size," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 31-57, January.
    9. Michael J. Martens & Brent R. Logan, 2018. "A group sequential test for treatment effect based on the Fine–Gray model," Biometrics, The International Biometric Society, vol. 74(3), pages 1006-1013, September.
    10. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    11. Ayuso, Mercedes & Bermúdez, Lluís & Santolino, Miguel, 2015. "The dynamics of one-sided incomplete information in motor disputes," International Review of Law and Economics, Elsevier, vol. 41(C), pages 77-85.
    12. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    13. Lee, Unkyung & Sun, Yanqing & Scheike, Thomas H. & Gilbert, Peter B., 2018. "Analysis of generalized semiparametric regression models for cumulative incidence functions with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 59-79.
    14. Carlos Forero & Josué Almansa & Núria Adroher & Jeroen Vermunt & Gemma Vilagut & Ron Graaf & Josep-Maria Haro & Jordi Alonso Caballero, 2014. "Partial Likelihood Estimation of IRT Models with Censored Lifetime Data: An Application to Mental Disorders in the ESEMeD Surveys," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 470-488, July.
    15. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    16. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    17. Soyoung Kim & Donglin Zeng & Jianwen Cai, 2018. "Analysis of multiple survival events in generalized case‐cohort designs," Biometrics, The International Biometric Society, vol. 74(4), pages 1250-1260, December.
    18. Song Zhang & Yang Qu & Yu Cheng & Oscar L. Lopez & Abdus S. Wahed, 2022. "Prognostic accuracy for predicting ordinal competing risk outcomes using ROC surfaces," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 1-22, January.
    19. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.
    20. Jie He & Hui Li & Shumei Zhang & Xiaogang Duan, 2019. "Additive hazards model with auxiliary subgroup survival information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 128-149, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3010-3022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.