IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc22/264019.html
   My bibliography  Save this paper

Whatever it Takes to Understand a Central Banker – Embedding their Words Using Neural Networks

Author

Listed:
  • Zahner, Johannes
  • Baumgärtner, Martin

Abstract

Dictionary approaches are at the forefront of current techniques for quantifying central bank communication. This paper proposes embeddings - a language model trained using machine learning techniques - to locate words and documents in a multidimensional vector space. To accomplish this, we utilize a text corpus that is unparalleled in size and diversity in the central bank communication literature, as well as introduce a novel approach to text quantification from computational linguistics. This allows us to provide high-quality central bank-specific textual representations and demonstrate their applicability by developing an index that tracks deviations in the Fed's communication towards inflationtargeting. Our findings indicate that these deviations in communication significantly impact monetary policy actions, substantiallyreducing the reaction towards inflation deviation in the US.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Zahner, Johannes & Baumgärtner, Martin, 2022. "Whatever it Takes to Understand a Central Banker – Embedding their Words Using Neural Networks," VfS Annual Conference 2022 (Basel): Big Data in Economics 264019, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc22:264019
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/264019/1/vfs-2022-pid-69468.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Azqueta-Gavaldon, Andres & Hirschbühl, Dominik & Onorante, Luca & Saiz, Lorena, 2019. "Sources of economic policy uncertainty in the euro area: a machine learning approach," Economic Bulletin Boxes, European Central Bank, vol. 5.
    2. Hayo, Bernd & Neuenkirch, Matthias, 2013. "Do Federal Reserve presidents communicate with a regional bias?," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 62-72.
    3. Altavilla, Carlo & Brugnolini, Luca & Gürkaynak, Refet S. & Motto, Roberto & Ragusa, Giuseppe, 2019. "Measuring euro area monetary policy," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 162-179.
    4. Chakraborty, Chiranjit & Joseph, Andreas, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    5. Yuriy Gorodnichenko & Tho Pham & Oleksandr Talavera, 2023. "The Voice of Monetary Policy," American Economic Review, American Economic Association, vol. 113(2), pages 548-584, February.
    6. Picault, Matthieu & Renault, Thomas, 2017. "Words are not all created equal: A new measure of ECB communication," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 136-156.
    7. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    8. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    9. Ehrmann, Michael & Talmi, Jonathan, 2020. "Starting from a blank page? Semantic similarity in central bank communication and market volatility," Journal of Monetary Economics, Elsevier, vol. 111(C), pages 48-62.
    10. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    11. Stephen Hansen & Michael McMahon, 2016. "Shocking Language: Understanding the Macroeconomic Effects of Central Bank Communication," NBER Chapters, in: NBER International Seminar on Macroeconomics 2015, National Bureau of Economic Research, Inc.
    12. Kremer, Manfred & Lo Duca, Marco & Holló, Dániel, 2012. "CISS - a composite indicator of systemic stress in the financial system," Working Paper Series 1426, European Central Bank.
    13. Nicolò Fraccaroli & Alessandro Giovannini & Jean-François Jamet & Eric Persson, 2023. "Central Banks in Parliaments: A Text Analysis of the Parliamentary Hearings of the Bank of England, the European Central Bank, and the Federal Reserve," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 543-600, June.
    14. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    15. Arina Wischnewsky & David‐Jan Jansen & Matthias Neuenkirch, 2021. "Financial stability and the Fed: Evidence from congressional hearings," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1192-1214, July.
    16. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    17. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    18. repec:ecb:ecbwps:20111426 is not listed on IDEAS
    19. Hansen, Stephen & McMahon, Michael & Tong, Matthew, 2019. "The long-run information effect of central bank communication," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 185-202.
    20. Aguilar, Pablo & Ghirelli, Corinna & Pacce, Matías & Urtasun, Alberto, 2021. "Can news help measure economic sentiment? An application in COVID-19 times," Economics Letters, Elsevier, vol. 199(C).
    21. Hinterlang, Natascha, 2020. "Predicting monetary policy using artificial neural networks," Discussion Papers 44/2020, Deutsche Bundesbank.
    22. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    23. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    24. Alan S. Blinder & Michael Ehrmann & Marcel Fratzscher & Jakob De Haan & David-Jan Jansen, 2008. "Central Bank Communication and Monetary Policy: A Survey of Theory and Evidence," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 910-945, December.
    25. Apel Mikael & Grimaldi Marianna Blix, 2014. "How Informative Are Central Bank Minutes?," Review of Economics, De Gruyter, vol. 65(1), pages 53-76, April.
    26. Matthew Gentzkow & Jesse M. Shapiro, 2010. "What Drives Media Slant? Evidence From U.S. Daily Newspapers," Econometrica, Econometric Society, vol. 78(1), pages 35-71, January.
    27. repec:pri:cepsud:161blinder is not listed on IDEAS
    28. Hayo, Bernd & Henseler, Kai & Steffen Rapp, Marc & Zahner, Johannes, 2022. "Complexity of ECB communication and financial market trading," Journal of International Money and Finance, Elsevier, vol. 128(C).
    29. Michael Ehrmann & Marcel Fratzscher, 2007. "Communication by Central Bank Committee Members: Different Strategies, Same Effectiveness?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 509-541, March.
    30. Claus Brand & Daniel Buncic & Jarkko Turunen, 2010. "The Impact of ECB Monetary Policy Decisions and Communication on the Yield Curve," Journal of the European Economic Association, MIT Press, vol. 8(6), pages 1266-1298, December.
    31. repec:nas:journl:v:115:y:2018:p:e3635-e3644 is not listed on IDEAS
    32. Stefano Nardelli & David Martens & Ellen Tobback, 2017. "Between hawks and doves: measuring Central Bank Communication," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Big Data, volume 44, Bank for International Settlements.
    33. Matthieu Picault & Thomas Renault, 2017. "Words are not all created equal: A new measure of ECB communication," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03205121, HAL.
    34. André Binette & Dmitri Tchebotarev, 2019. "Canada’s Monetary Policy Report: If Text Could Speak, What Would It Say?," Staff Analytical Notes 2019-5, Bank of Canada.
    35. Hans Genberg & Özer Karagedikli, 2021. "Machine Learning and Central Banks: Ready for Prime Time?," Working Papers wp43, South East Asian Central Banks (SEACEN) Research and Training Centre.
    36. Taeyoung Doh & Dongho Song & Shu-Kuei X. Yang, 2020. "Deciphering Federal Reserve Communication via Text Analysis of Alternative FOMC Statements," Research Working Paper RWP 20-14, Federal Reserve Bank of Kansas City.
    37. Schmeling, Maik & Wagner, Christian, 2019. "Does Central Bank Tone Move Asset Prices?," CEPR Discussion Papers 13490, C.E.P.R. Discussion Papers.
    38. Tobback, Ellen & Nardelli, Stefano & Martens, David, 2017. "Between hawks and doves: measuring central bank communication," Working Paper Series 2085, European Central Bank.
    39. Miguel Acosta & Ellen E. Meade, 2015. "Hanging on Every Word : Semantic Analysis of the FOMC's Postmeeting Statement," FEDS Notes 2015-09-30, Board of Governors of the Federal Reserve System (U.S.).
    40. Johannes Zahner, 2020. "Above, but close to two percent. Evidence on the ECB’s inflation target using text mining," MAGKS Papers on Economics 202046, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    41. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baumgärtner, Martin & Zahner, Johannes, 2024. "Talking fragmentation away – Decoding the ’whatever it takes’ effect," Economics Letters, Elsevier, vol. 234(C).
    2. Hayo, Bernd & Zahner, Johannes, 2023. "What is that noise? Analysing sentiment-based variation in central bank communication," Economics Letters, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baumgärtner, Martin & Zahner, Johannes, 2023. "Whatever it takes to understand a central banker: Embedding their words using neural networks," IMFS Working Paper Series 194, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
    2. Donato Masciandaro & Davide Romelli & Gaia Rubera, 2021. "Monetary policy and financial markets: evidence from Twitter traffic," BAFFI CAREFIN Working Papers 21160, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    3. Hayo, Bernd & Henseler, Kai & Steffen Rapp, Marc & Zahner, Johannes, 2022. "Complexity of ECB communication and financial market trading," Journal of International Money and Finance, Elsevier, vol. 128(C).
    4. Parle, Conor, 2022. "The financial market impact of ECB monetary policy press conferences — A text based approach," European Journal of Political Economy, Elsevier, vol. 74(C).
    5. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    6. Istrefi, Klodiana & Odendahl, Florens & Sestieri, Giulia, 2023. "Fed communication on financial stability concerns and monetary policy decisions: Revelations from speeches," Journal of Banking & Finance, Elsevier, vol. 151(C).
    7. Dimitrios Kanelis & Pierre L. Siklos, 2022. "Emotion in Euro Area Monetary Policy Communication and Bond Yields: The Draghi Era," CQE Working Papers 10322, Center for Quantitative Economics (CQE), University of Muenster.
    8. Möller, Rouven & Reichmann, Doron, 2021. "ECB language and stock returns – A textual analysis of ECB press conferences," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 590-604.
    9. Johannes Zahner, 2020. "Above, but close to two percent. Evidence on the ECB’s inflation target using text mining," MAGKS Papers on Economics 202046, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    10. Baranowski, Paweł & Doryń, Wirginia & Łyziak, Tomasz & Stanisławska, Ewa, 2021. "Words and deeds in managing expectations: Empirical evidence from an inflation targeting economy," Economic Modelling, Elsevier, vol. 95(C), pages 49-67.
    11. Paul Hubert & Fabien Labondance, 2019. "Central bank tone and the dispersion of views within monetary policy committees," Working Papers hal-03403256, HAL.
    12. Linas Jurkšas & Rokas Kaminskas, 2023. "ECB monetary policy communication: does it move euro area yields?," Bank of Lithuania Discussion Paper Series 29, Bank of Lithuania.
    13. Justyna Klejdysz & Robin L. Lumsdaine, 2023. "Shifts in ECB Communication: A Textual Analysis of the Press Conference," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 473-542, June.
    14. Valerio Astuti & Alessio Ciarlone & Alberto Coco, 2022. "The role of central bank communication in inflation-targeting Eastern European emerging economies," Temi di discussione (Economic working papers) 1381, Bank of Italy, Economic Research and International Relations Area.
    15. Paloviita, Maritta & Haavio, Markus & Jalasjoki, Pirkka & Kilponen, Juha & Vänni, Ilona, 2020. "Reading between the lines : Using text analysis to estimate the loss function of the ECB," Research Discussion Papers 12/2020, Bank of Finland.
    16. Dooruj Rambaccussing & Craig Menzies & Andrzej Kwiatkowski, 2022. "Look who’s Talking: Individual Committee members’ impact on inflation expectations," Dundee Discussion Papers in Economics 305, Economic Studies, University of Dundee.
    17. repec:zbw:bofrdp:2020_012 is not listed on IDEAS
    18. Xuefan, Pan, 2023. "Analysing the response of U.S. financial market to the Federal Open Market Committee statements and minutes based on computational linguistic approaches," Warwick-Monash Economics Student Papers 43, Warwick Monash Economics Student Papers.
    19. Mario Gonzalez & Raul Cruz Tadle, 2022. "Monetary policy press releases: an international comparison," BIS Working Papers 1023, Bank for International Settlements.
    20. Donato Masciandaro & Davide Romelli & Gaia Rubera, 2021. "Monetary policy, Twitter and financial markets: evidence from social media traffic," BAFFI CAREFIN Working Papers 21160, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    21. Jonne Lehtimäki & Marianne Palmu, 2022. "Who Should You Listen to in a Crisis? Differences in Communication of Central Bank Policymakers," Journal of Central Banking Theory and Practice, Central bank of Montenegro, vol. 11(3), pages 33-57.

    More about this item

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc22:264019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.