IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2015-023.html
   My bibliography  Save this paper

An adaptive approach to forecasting three key macroeconomic variables for transitional China

Author

Listed:
  • Niu, Linlin
  • Xu, Xiu
  • Chen, Ying

Abstract

We propose the use of a local autoregressive (LAR) model for adaptive estimation and forecasting of three of China's key macroeconomic variables: GDP growth, inflation and the 7-day interbank lending rate. The approach takes into account possible structural changes in the data-generating process to select a local homogeneous interval for model estimation, and is particularly well-suited to a transition economy experiencing ongoing shifts in policy and structural adjustment. Our results indicate that the proposed method outperforms alternative models and forecast methods, especially for forecast horizons of 3 to 12 months. Our 1-quarter ahead adaptive forecasts even match the performance of the well-known CMRC Langrun survey forecast. The selected homogeneous intervals indicate gradual changes in growth of industrial production driven by constant evolution of the real economy in China, as well as abrupt changes in interestrate and inflation dynamics that capture monetary policy shifts.

Suggested Citation

  • Niu, Linlin & Xu, Xiu & Chen, Ying, 2015. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," SFB 649 Discussion Papers 2015-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2015-023
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/119431/1/826615562.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Horvath, Roman, 2011. "Research & development and growth: A Bayesian model averaging analysis," Economic Modelling, Elsevier, vol. 28(6), pages 2669-2673.
    3. Shiu, Alice & Lam, Pun-Lee, 2004. "Electricity consumption and economic growth in China," Energy Policy, Elsevier, vol. 32(1), pages 47-54, January.
    4. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    5. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
    6. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    7. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    10. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    11. Chen, Sheng-Tung & Kuo, Hsiao-I & Chen, Chi-Chung, 2007. "The relationship between GDP and electricity consumption in 10 Asian countries," Energy Policy, Elsevier, vol. 35(4), pages 2611-2621, April.
    12. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    13. Härdle, Wolfgang Karl & Mihoci, Andrija & Ting, Christopher Hian-Ann, 2014. "Adaptive order flow forecasting with multiplicative error models," SFB 649 Discussion Papers 2014-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    17. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    18. Wolfgang K. Härdle & Nikolaus Hautsch & Andrija Mihoci, 2015. "Local Adaptive Multiplicative Error Models for High‐Frequency Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 529-550, June.
    19. Liu, Philip & Matheson, Troy & Romeu, Rafael, 2012. "Real-time forecasts of economic activity for Latin American economies," Economic Modelling, Elsevier, vol. 29(4), pages 1090-1098.
    20. Krkoska, Libor & Teksoz, Utku, 2007. "Accuracy of GDP growth forecasts for transition countries: Ten years of forecasting assessed," International Journal of Forecasting, Elsevier, vol. 23(1), pages 29-45.
    21. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    22. Tatevik Sekhposyan & Barbara Rossi, 2008. "Has modelsí forecasting performance for US output growth and inflation changed over time, and when?," Working Papers 09-02, Duke University, Department of Economics.
    23. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    24. Xu, Xiu & Mihoci, Andrija & Härdle, Wolfgang Karl, 2018. "lCARE - localizing conditional autoregressive expectiles," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 198-220.
    25. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    26. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    27. Spokoiny, Vladimir G., 1998. "Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice," SFB 373 Discussion Papers 1998,1, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    28. Roman Horváth, 2011. "Research & Development and Long-Term Economic Growth: A Bayesian Model Averaging Analysis," Working Papers IES 2011/19, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jun 2011.
    29. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    30. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    31. Kaya, Huseyin, 2013. "Forecasting the yield curve and the role of macroeconomic information in Turkey," Economic Modelling, Elsevier, vol. 33(C), pages 1-7.
    32. Justin Yifu Lin, 2013. "Demystifying the Chinese Economy," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 46(3), pages 259-268, September.
    33. James H. Stock & Mark W. Watson, 2007. "Erratum to “Why Has U.S. Inflation Become Harder to Forecast?”," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    34. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    35. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    36. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Chapter 4 Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Frontiers of Economics and Globalization, in: Forecasting in the Presence of Structural Breaks and Model Uncertainty, pages 149-194, Emerald Group Publishing Limited.
    37. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    38. Bekiros, Stelios, 2014. "Forecasting with a state space time-varying parameter VAR model: Evidence from the Euro area," Economic Modelling, Elsevier, vol. 38(C), pages 619-626.
    39. Moser, Gabriel & Rumler, Fabio & Scharler, Johann, 2007. "Forecasting Austrian inflation," Economic Modelling, Elsevier, vol. 24(3), pages 470-480, May.
    40. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    41. Pourazarm, Elham & Cooray, Arusha, 2013. "Estimating and forecasting residential electricity demand in Iran," Economic Modelling, Elsevier, vol. 35(C), pages 546-558.
    42. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    43. Jusczak, Grazyna & Kazmierska, Maria Magdalena & Lapinska-Sobczak, Nina & Welfe, Wladyslaw, 1993. "Quarterly model of the polish economy in transition (with special emphasis on financial flows)," Economic Modelling, Elsevier, vol. 10(2), pages 127-149, April.
    44. Rossi, Barbara & Sekhposyan, Tatevik, 2010. "Have economic models' forecasting performance for US output growth and inflation changed over time, and when?," International Journal of Forecasting, Elsevier, vol. 26(4), pages 808-835, October.
    45. Cross, Jamie & Poon, Aubrey, 2016. "Forecasting structural change and fat-tailed events in Australian macroeconomic variables," Economic Modelling, Elsevier, vol. 58(C), pages 34-51.
    46. Miguel Belmonte & Gary Koop, 2014. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69, Emerald Group Publishing Limited.
    47. Philipp Maier, 2011. "Mixed Frequency Forecasts for Chinese GDP," Staff Working Papers 11-11, Bank of Canada.
    48. Gupta, Rangan & Steinbach, Rudi, 2013. "A DSGE-VAR model for forecasting key South African macroeconomic variables," Economic Modelling, Elsevier, vol. 33(C), pages 19-33.
    49. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    50. Clements Michael P. & Hendry David F., 2008. "Economic Forecasting in a Changing World," Capitalism and Society, De Gruyter, vol. 3(2), pages 1-20, October.
    51. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, September.
    52. Manganelli, Simone, 2009. "Forecasting With Judgment," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 553-563.
    53. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    54. Heiner Mikosch & Ying Zhang, 2014. "Forecasting Chinese GDP Growth with Mixed Frequency Data," KOF Working papers 14-359, KOF Swiss Economic Institute, ETH Zurich.
    55. Barry Naughton, 2007. "The Chinese Economy: Transitions and Growth," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262640643, April.
    56. Balcilar, Mehmet & Gupta, Rangan & Kotzé, Kevin, 2015. "Forecasting macroeconomic data for an emerging market with a nonlinear DSGE model," Economic Modelling, Elsevier, vol. 44(C), pages 215-228.
    57. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    58. Narayan, Paresh Kumar & Narayan, Seema & Prasad, Arti, 2008. "A structural VAR analysis of electricity consumption and real GDP: Evidence from the G7 countries," Energy Policy, Elsevier, vol. 36(7), pages 2765-2769, July.
    59. Próchniak, Mariusz & Witkowski, Bartosz, 2013. "Time stability of the beta convergence among EU countries: Bayesian model averaging perspective," Economic Modelling, Elsevier, vol. 30(C), pages 322-333.
    60. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    61. Man, Georg, 2015. "Competition and the growth of nations: International evidence from Bayesian model averaging," Economic Modelling, Elsevier, vol. 51(C), pages 491-501.
    62. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
    63. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klochkov, Yegor & Härdle, Wolfgang Karl & Xu, Xiu, 2019. "Localizing Multivariate CAViaR," IRTG 1792 Discussion Papers 2019-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. repec:hum:wpaper:sfb649dp2017-023 is not listed on IDEAS
    3. Niels Gillmann & Ostap Okhrin, 2023. "Adaptive local VAR for dynamic economic policy uncertainty spillover," Papers 2302.02808, arXiv.org.
    4. Li, Xinjue & Zbonakova, Lenka & Härdle, Wolfgang Karl, 2017. "Penalized adaptive method in forecasting with large information set and structure change," SFB 649 Discussion Papers 2017-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:bofitp:2015_012 is not listed on IDEAS
    2. Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
    3. repec:zbw:bofitp:urn:nbn:fi:bof-201504131155 is not listed on IDEAS
    4. repec:bof:bofitp:urn:nbn:fi:bof-201504131155 is not listed on IDEAS
    5. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    6. Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023. "Real-time inflation forecasting using non-linear dimension reduction techniques," International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
    7. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    8. Pablo Guerróon‐Quintana & Molin Zhong, 2023. "Macroeconomic forecasting in times of crises," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
    9. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    10. Ibarra, Raul, 2012. "Do disaggregated CPI data improve the accuracy of inflation forecasts?," Economic Modelling, Elsevier, vol. 29(4), pages 1305-1313.
    11. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    12. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    13. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    14. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
    15. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    17. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    18. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    19. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    20. Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    21. Afees A. Salisu & Raymond Swaray & Hadiza Sa'id, 2021. "Improving forecasting accuracy of the Phillips curve in OECD countries: The role of commodity prices," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2946-2975, April.
    22. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    23. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.

    More about this item

    Keywords

    Chinese economy; local parametric models; forecasting;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2015-023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.