IDEAS home Printed from https://ideas.repec.org/p/zbw/esprep/222579.html
   My bibliography  Save this paper

Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector

Author

Listed:
  • Pietzcker, Robert
  • Osorio, Sebastian
  • Rodrigues, Renato

Abstract

The EU Green Deal calls for climate neutrality by 2050 and emission reductions of 50-55% in 2030 in comparison to 1990. Achieving these reductions requires a substantial tightening of the regulations of the EU emissions trading system (EU ETS). This paper explores how the power sector would have to change in reaction to a tighter EU ETS target, and analyses the technological and economic implications. To cover the major ETS sectors, we combine a detailed power sector model with a marginal-abatement cost curve representation of industry emission abatement. We find that tightening the target would speed up the transformation by 3-17 years for different parts of the electricity system, with renewables contributing 74% of the electricity in 2030, EU-wide coal use almost completely phased-out by 2030 instead of 2045, and zero electricity generation emissions reached by 2040. Carbon prices within the EU ETS would more than triple to 129€/tCO2 in 2030, reducing cumulated power sector emissions from 2017-2057 by 54% compared to a scenario with the current target. This transformation would come at limited costs: total discounted power system costs would only increase by 5%. We test our findings against a number of sensitivities: an increased electricity demand, which might arise from sector coupling, increases deployment of wind and solar and prolongs gas usage. Not allowing transmission expansion beyond 2020 levels shifts investments from wind to PV, hydrogen and batteries, and increases total system costs by 3%. Finally, the unavailability of fossil carbon capture and storage (CCS) or further nuclear investments does not impact results. Unavailability of bioenergy-based CCS (BECCS) has a visible impact (18% increase) on cumulated power sector emissions, thus shifting more of the mitigation burden to the industry sector, but does not increase electricity prices or total system costs (

Suggested Citation

  • Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
  • Handle: RePEc:zbw:esprep:222579
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/232295/1/2021Pietzcker_EUETStargets_EconstorWP.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
    2. Sonja Renssen, 2018. "The inconvenient truth of failed climate policies," Nature Climate Change, Nature, vol. 8(5), pages 355-358, May.
    3. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    4. Vera Heck & Dieter Gerten & Wolfgang Lucht & Alexander Popp, 2018. "Biomass-based negative emissions difficult to reconcile with planetary boundaries," Nature Climate Change, Nature, vol. 8(2), pages 151-155, February.
    5. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    6. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    7. Portugal-Pereira, J. & Ferreira, P. & Cunha, J. & Szklo, A. & Schaeffer, R. & Araújo, M., 2018. "Better late than never, but never late is better: Risk assessment of nuclear power construction projects," Energy Policy, Elsevier, vol. 120(C), pages 158-166.
    8. Asbjørn Torvanger, 2019. "Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 329-341, March.
    9. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    2. Masoud Khatibi & Abbas Rabiee & Amir Bagheri, 2023. "Integrated Electricity and Gas Systems Planning: New Opportunities, and a Detailed Assessment of Relevant Issues," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    3. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    4. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    5. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    6. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    7. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    8. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    9. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    10. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    11. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    12. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    13. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).
    14. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    15. Florin Iov & Mahmood Khatibi & Jan Dimon Bendtsen, 2020. "On the Participation of Power-To-Heat Assets in Frequency Regulation Markets—A Danish Case Study," Energies, MDPI, vol. 13(18), pages 1-22, September.
    16. Felten, Björn & Weber, Christoph, 2018. "The value(s) of flexible heat pumps – Assessment of technical and economic conditions," Applied Energy, Elsevier, vol. 228(C), pages 1292-1319.
    17. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    18. Peter Klement & Tobias Brandt & Lucas Schmeling & Antonieta Alcorta de Bronstein & Steffen Wehkamp & Fernando Andres Penaherrera Vaca & Mathias Lanezki & Patrik Schönfeldt & Alexander Hill & Nemanja K, 2022. "Local Energy Markets in Action: Smart Integration of National Markets, Distributed Energy Resources and Incentivisation to Promote Citizen Participation," Energies, MDPI, vol. 15(8), pages 1-24, April.
    19. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    20. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).

    More about this item

    Keywords

    European Green Deal; EU Emission Trading System (EU ETS); Electricity Decarbonization; power sector; Renewable Energy; carbon capture and storage (CCS); Carbon price; Storage; Transmission grid expansion; solar; Wind; hydrogen turbine; Climate Change Mitigation; Nuclear; Electricity Price;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • L52 - Industrial Organization - - Regulation and Industrial Policy - - - Industrial Policy; Sectoral Planning Methods
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:esprep:222579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zbwkide.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.