IDEAS home Printed from https://ideas.repec.org/p/zbw/cfrwps/0804.html
   My bibliography  Save this paper

Price adjustment to news with uncertain precision

Author

Listed:
  • Hautsch, Nikolaus
  • Hess, Dieter E.
  • Müller, Christoph

Abstract

Bayesian learning provides the core concept of processing noisy information. In standard Bayesian frameworks, assessing the price impact of information requires perfect knowledge of news' precision. In practice, however, precision is rarely dis- closed. Therefore, we extend standard Bayesian learning, suggesting traders infer news' precision from magnitudes of surprises and from external sources. We show that interactions of the different precision signals may result in highly nonlinear price responses. Empirical tests based on intra-day T-bond futures price reactions to employment releases confirm the model's predictions and show that the effects are statistically and economically significant.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Hautsch, Nikolaus & Hess, Dieter E. & Müller, Christoph, 2008. "Price adjustment to news with uncertain precision," CFR Working Papers 08-04, University of Cologne, Centre for Financial Research (CFR).
  • Handle: RePEc:zbw:cfrwps:0804
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    2. S. Borağan Aruoba, 2008. "Data Revisions Are Not Well Behaved," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(2‐3), pages 319-340, March.
    3. Hautsch, Nikolaus & Hess, Dieter, 2007. "Bayesian Learning in Financial Markets: Testing for the Relevance of Information Precision in Price Discovery," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(1), pages 189-208, March.
    4. Michael J. Fleming & Eli M Remolona, 1999. "The term structure of announcement effects," BIS Working Papers 71, Bank for International Settlements.
    5. Kandel, Eugene & Pearson, Neil D, 1995. "Differential Interpretation of Public Signals and Trade in Speculative Markets," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 831-872, August.
    6. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    7. Ľuboš Pástor & Veronesi Pietro, 2003. "Stock Valuation and Learning about Profitability," Journal of Finance, American Finance Association, vol. 58(5), pages 1749-1789, October.
    8. Mattsson, Lars-Göran & Voorneveld, Mark & Weibull, Jörgen W., 2004. "Better may be worse: Some monotonicity results and paradoxes in discrete choice," SSE/EFI Working Paper Series in Economics and Finance 558, Stockholm School of Economics, revised 13 Sep 2006.
    9. Richardson, Scott A. & Sloan, Richard G. & Soliman, Mark T. & Tuna, Irem, 2005. "Accrual reliability, earnings persistence and stock prices," Journal of Accounting and Economics, Elsevier, vol. 39(3), pages 437-485, September.
    10. Lubos Pastor & Pietro Veronesi, 2009. "Learning in Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 361-381, November.
    11. Hardouvelis, Gikas A., 1988. "Economic news, exchange rates and interest rates," Journal of International Money and Finance, Elsevier, vol. 7(1), pages 23-35, March.
    12. Pilotte, Eugene & Manuel, Timothy, 1996. "The market's response to recurring events The case of stock splits," Journal of Financial Economics, Elsevier, vol. 41(1), pages 111-127, May.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    14. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    15. Holthausen, Rw & Verrecchia, Re, 1988. "The Effect Of Sequential Information Releases On The Variance Of Price Changes In An Intertemporal Multi-Asset Market," Journal of Accounting Research, Wiley Blackwell, vol. 26(1), pages 82-106.
    16. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    17. Paul R. Milgrom, 1981. "Good News and Bad News: Representation Theorems and Applications," Bell Journal of Economics, The RAND Corporation, vol. 12(2), pages 380-391, Autumn.
    18. Pietro Veronesi, 2000. "How Does Information Quality Affect Stock Returns?," Journal of Finance, American Finance Association, vol. 55(2), pages 807-837, April.
    19. Kim, O & Verrecchia, Re, 1991. "Trading Volume And Price Reactions To Public Announcements," Journal of Accounting Research, Wiley Blackwell, vol. 29(2), pages 302-321.
    20. Alan B. Krueger & Kenneth N. Fortson, 2003. "Do Markets Respond More to More Reliable Labor Market Data? A Test of Market Rationality," Journal of the European Economic Association, MIT Press, vol. 1(4), pages 931-957, June.
    21. Nikolaus Hautsch & Dieter Hess, 2002. "The Processing of Non-Anticipated Information in Financial Markets: Analyzing the Impact of Surprises in the Employment Report," Review of Finance, European Finance Association, vol. 6(2), pages 133-161.
    22. John H. Boyd & Jian Hu & Ravi Jagannathan, 2005. "The Stock Market's Reaction to Unemployment News: Why Bad News Is Usually Good for Stocks," Journal of Finance, American Finance Association, vol. 60(2), pages 649-672, April.
    23. Andrea Buraschi & Alexei Jiltsov, 2006. "Model Uncertainty and Option Markets with Heterogeneous Beliefs," Journal of Finance, American Finance Association, vol. 61(6), pages 2841-2897, December.
    24. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 523-543, December.
    25. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    26. David, Alexander, 1997. "Fluctuating Confidence in Stock Markets: Implications for Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 427-462, December.
    27. Almeida, Alvaro & Goodhart, Charles & Payne, Richard, 1998. "The Effects of Macroeconomic News on High Frequency Exchange Rate Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(3), pages 383-408, September.
    28. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    29. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    30. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    31. Jennifer Conrad & Bradford Cornell & Wayne R. Landsman, 2002. "When Is Bad News Really Bad News?," Journal of Finance, American Finance Association, vol. 57(6), pages 2507-2532, December.
    32. Paolo Pasquariello & Clara Vega, 2007. "Informed and Strategic Order Flow in the Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1975-2019, November.
    33. Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
    34. Michael J. Fleming & Eli M. Remolona, 1999. "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," Journal of Finance, American Finance Association, vol. 54(5), pages 1901-1915, October.
    35. Abarbanell, Jeffery S. & Lanen, William N. & Verrecchia, Robert E., 1995. "Analysts' forecasts as proxies for investor beliefs in empirical research," Journal of Accounting and Economics, Elsevier, vol. 20(1), pages 31-60, July.
    36. McQueen, Grant & Roley, V Vance, 1993. "Stock Prices, News, and Business Conditions," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 683-707.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hautsch, Nikolaus & Hess, Dieter & Veredas, David, 2011. "The impact of macroeconomic news on quote adjustments, noise, and informational volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2733-2746, October.
    2. repec:hum:wpaper:sfb649dp2010-005 is not listed on IDEAS
    3. Pervaiz Alam & Xiaoling Pu & Barry Hettler & Hai Lin, 2020. "The pricing of accruals quality in credit default swap spreads," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(3), pages 1943-1977, September.
    4. Hess, Dieter & Orbe, Sebastian, 2011. "Irrationality or efficiency of macroeconomic survey forecasts? Implications from the anchoring bias test," CFR Working Papers 11-13, University of Cologne, Centre for Financial Research (CFR).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2008-025 is not listed on IDEAS
    2. Gilbert, Thomas, 2011. "Information aggregation around macroeconomic announcements: Revisions matter," Journal of Financial Economics, Elsevier, vol. 101(1), pages 114-131, July.
    3. Hautsch, Nikolaus & Hess, Dieter, 2007. "Bayesian Learning in Financial Markets: Testing for the Relevance of Information Precision in Price Discovery," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(1), pages 189-208, March.
    4. Hautsch, Nikolaus & Hess, Dieter & Veredas, David, 2011. "The impact of macroeconomic news on quote adjustments, noise, and informational volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2733-2746, October.
    5. Thomas Gilbert & Chiara Scotti & Georg Strasser & Clara Vega, 2015. "Is the Intrinsic Value of Macroeconomic News Announcements Related to their Asset Price Impact?," Finance and Economics Discussion Series 2015-46, Board of Governors of the Federal Reserve System (U.S.).
    6. Faust, Jon & Rogers, John H. & Wang, Shing-Yi B. & Wright, Jonathan H., 2007. "The high-frequency response of exchange rates and interest rates to macroeconomic announcements," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1051-1068, May.
    7. Verrecchia, Robert E., 2001. "Essays on disclosure," Journal of Accounting and Economics, Elsevier, vol. 32(1-3), pages 97-180, December.
    8. Lubos Pastor & Pietro Veronesi, 2009. "Learning in Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 361-381, November.
    9. Erenburg, Grigori & Kurov, Alexander & Lasser, Dennis J., 2006. "Trading around macroeconomic announcements: Are all traders created equal?," Journal of Financial Intermediation, Elsevier, vol. 15(4), pages 470-493, October.
    10. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Laakkonen Helinä & Lanne Markku, 2009. "Asymmetric News Effects on Exchange Rate Volatility: Good vs. Bad News in Good vs. Bad Times," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-38, December.
    12. Brenner, Menachem & Pasquariello, Paolo & Subrahmanyam, Marti, 2009. "On the Volatility and Comovement of U.S. Financial Markets around Macroeconomic News Announcements," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(6), pages 1265-1289, December.
    13. Nowak, Sylwia & Anderson, Heather M., 2014. "How does public information affect the frequency of trading in airline stocks?," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 26-38.
    14. James Ming Chen, 2017. "Systematic Risk in the Macrocosm," Quantitative Perspectives on Behavioral Economics and Finance, in: Econophysics and Capital Asset Pricing, chapter 0, pages 239-274, Palgrave Macmillan.
    15. Füss, Roland & Grabellus, Markus & Mager, Ferdinand & Stein, Michael, 2018. "Something in the air: Information density, news surprises, and price jumps," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 53(C), pages 50-75.
    16. Mark J. Flannery & Aris A. Protopapadakis, 2002. "Macroeconomic Factors Do Influence Aggregate Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(3), pages 751-782.
    17. Tolga Cenesizoglu, 2010. "The Reaction of Stock Returns to News about Fundamentals," Cahiers de recherche 1032, CIRPEE.
    18. Sonya Zhu, 2023. "Volume dynamics around FOMC announcements," BIS Working Papers 1079, Bank for International Settlements.
    19. Martin D. D. Evans & Richard K. Lyons, 2017. "Time-Varying Liquidity in Foreign Exchange," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 8, pages 325-361, World Scientific Publishing Co. Pte. Ltd..
    20. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfrwps:0804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cfkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.