IDEAS home Printed from https://ideas.repec.org/p/yor/hectdg/17-22.html
   My bibliography  Save this paper

On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments

Author

Listed:
  • Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;

Abstract

We investigate the behaviour of the Lasso for selecting invalid instruments in linear instrumental variables models for estimating causal effects of exposures on outcomes, as proposed recently by Kang, Zhang, Cai and Small (2016, Journal of the American Statistical Association).Invalid instruments are such that they fail the exclusion restriction and enter the model as explanatory variables. We show that for this setup, the Lasso may not select all invalid instruments in large samples if they are relatively strong. Consistent selection also depends on the correlation structure of the instruments. We propose a median estimator that is consistent when less than 50% of the instruments are invalid, but its consistency does not depend on the relative strength of the instruments or their correlation structure. This estimator can therefore be used for adaptive Lasso estimation. The methods are applied to a Mendelian randomisation study to estimate the causal effect of BMI on diastolic blood pressure using data on individuals from the UK Biobank, with 96 single nucleotide polymorphisms as potential instruments for BMI.

Suggested Citation

  • Windmeijer, F.; Farbmacher, H.; Davies, N.; Davey Smith, G.;, 2017. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Health, Econometrics and Data Group (HEDG) Working Papers 17/22, HEDG, c/o Department of Economics, University of York.
  • Handle: RePEc:yor:hectdg:17/22
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/1722.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    5. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    6. von Hinke, Stephanie & Davey Smith, George & Lawlor, Debbie A. & Propper, Carol & Windmeijer, Frank, 2016. "Genetic markers as instrumental variables," Journal of Health Economics, Elsevier, vol. 45(C), pages 131-148.
    7. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    8. Han, Chirok, 2008. "Detecting invalid instruments using L1-GMM," Economics Letters, Elsevier, vol. 101(3), pages 285-287, December.
    9. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    10. Wei Lin & Rui Feng & Hongzhe Li, 2015. "Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 270-288, March.
    11. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    12. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    13. Corbae,Dean & Durlauf,Steven N. & Hansen,Bruce E. (ed.), 2006. "Econometric Theory and Practice," Cambridge Books, Cambridge University Press, number 9780521807234, September.
    14. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    15. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    18. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
    19. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 979-1014.
    20. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    2. Frank Windmeijer & Xiaoran Liang & Fernando P. Hartwig & Jack Bowden, 2021. "The confidence interval method for selecting valid instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 752-776, September.
    3. Yiqi Lin & Frank Windmeijer & Xinyuan Song & Qingliang Fan, 2022. "On the instrumental variable estimation with many weak and invalid instruments," Papers 2207.03035, arXiv.org, revised Dec 2023.
    4. Gyuhyeong Goh & Jisang Yu, 2022. "Causal inference with some invalid instrumental variables: A quasi‐Bayesian approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1432-1451, December.
    5. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    6. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    7. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    8. Hyunseung Kang & Youjin Lee & T. Tony Cai & Dylan S. Small, 2022. "Two robust tools for inference about causal effects with invalid instruments," Biometrics, The International Biometric Society, vol. 78(1), pages 24-34, March.
    9. Bai Huang & Tae-Hwy Lee & Aman Ullah, 2017. "A combined estimator of regression models with measurement errors," Indian Economic Review, Springer, vol. 52(1), pages 73-91, December.
    10. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    11. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    12. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    13. Nicolas Apfel, 2019. "Relaxing the Exclusion Restriction in Shift-Share Instrumental Variable Estimation," Papers 1907.00222, arXiv.org, revised Jul 2022.
    14. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    15. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    16. Xu Cheng & Zhipeng Liao, 2012. "Select the Valid and Relevant Moments: A One-Step Procedure for GMM with Many Moments," PIER Working Paper Archive 12-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    17. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    18. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    19. Liang, X.; & Sanderson, E.; & Windmeijer, F.;, 2022. "Selecting Valid Instrumental Variables in Linear Models with Multiple Exposure Variables: Adaptive Lasso and the Median-of-Medians Estimator," Health, Econometrics and Data Group (HEDG) Working Papers 22/22, HEDG, c/o Department of Economics, University of York.
    20. Qingliang Fan & Zijian Guo & Ziwei Mei, 2022. "A Heteroskedasticity-Robust Overidentifying Restriction Test with High-Dimensional Covariates," Papers 2205.00171, arXiv.org, revised May 2024.
    21. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.

    More about this item

    Keywords

    causal inference; instrumental variables estimation; invalid instruments; Lasso; Mendelian randomisation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:17/22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jane Rawlings (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.