IDEAS home Printed from https://ideas.repec.org/p/wfo/wpaper/y2015i495.html
   My bibliography  Save this paper

Indicators for Sustainable Energy Development for Austria (ISED-AT). Residential Buildings and Electricity and Heat Supply

Author

Listed:
  • Claudia Kettner-Marx
  • Daniela Kletzan-Slamanig

    (WIFO)

  • Angela Köppl

Abstract

A transformation of prevailing energy systems requires adequate measurement systems. In this paper we propose an energy-service based indicator set and a composite index for monitoring sustainable energy development in the residential sector and electricity and heat supply in Austria. The system of Indicators for Sustainable Energy Development for Austria (ISED-AT) and the composite index focus on energy services instead of energy flows and are hence effective tools for monitoring and guiding the transition, as they allow assessing the whole range of technology options for providing a particular energy service. The analysis of household final energy demand and electricity and heat supply in Austria shows substantial progress in terms of ecological aspects, such as the share of renewable energy sources and CO2 emissions. With respect to energy efficiency, in contrast, only little improvement can be observed. Efficiency of energy service provision is decreasing except for heating and air conditioning. Final energy demand is rising in all areas of household energy demand. The challenge lies in a substantial improvement of energy efficiency that will allow an absolute decoupling of energy service demand from final energy consumption.

Suggested Citation

  • Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Indicators for Sustainable Energy Development for Austria (ISED-AT). Residential Buildings and Electricity and Heat Supply," WIFO Working Papers 495, WIFO.
  • Handle: RePEc:wfo:wpaper:y:2015:i:495
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/57857
    File Function: abstract
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angela Köppl & Claudia Kettner & Daniela Kletzan-Slamanig & Stefan Schleicher & Andrea Damm & Karl Steininger & Brigitte Wolkinger & Hans Schnitzer & Michaela Titz & Heidemarie Artner & Andreas Karne, 2014. "Energy Transition in Austria: Designing Mitigation Wedges," Energy & Environment, , vol. 25(2), pages 281-304, April.
    2. Martchamadol, Jutamanee & Kumar, S., 2013. "An aggregated energy security performance indicator," Applied Energy, Elsevier, vol. 103(C), pages 653-670.
    3. Chaturvedi, Vaibhav & Eom, Jiyong & Clarke, Leon E. & Shukla, Priyadarshi R., 2014. "Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework," Energy Policy, Elsevier, vol. 64(C), pages 226-242.
    4. Haas, Reinhard & Nakicenovic, Nebojsa & Ajanovic, Amela & Faber, Thomas & Kranzl, Lukas & Müller, Andreas & Resch, Gustav, 2008. "Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies," Energy Policy, Elsevier, vol. 36(11), pages 4012-4021, November.
    5. Luo, Guo-liang & Zhang, Xinghua, 2012. "Universalization of access to modern energy services in Tibetan rural households—Renewable energy's exploitation, utilization, and policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2373-2380.
    6. Claudia Kettner-Marx & Oliver Fritz & Angela Köppl & Eduardo A. Haddad & Alexandre Porsse, 2012. "Volkswirtschaftliche Effekte von Maßnahmen zur Steigerung der Energieeffizienz und des Anteils erneuerbarer Energien in den österreichischen Klima- und Energiemodellregionen," WIFO Studies, WIFO, number 45538.
    7. Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Angela Köppl & Katharina Köberl-Schmid, 2012. "Indicators for Sustainable Energy Development. The PASHMINA Approach," WIFO Studies, WIFO, number 45903.
    8. Gouveia, João Pedro & Fortes, Patrícia & Seixas, Júlia, 2012. "Projections of energy services demand for residential buildings: Insights from a bottom-up methodology," Energy, Elsevier, vol. 47(1), pages 430-442.
    9. Cullen, Jonathan M. & Allwood, Julian M., 2010. "The efficient use of energy: Tracing the global flow of energy from fuel to service," Energy Policy, Elsevier, vol. 38(1), pages 75-81, January.
    10. Ma, Linwei & Allwood, Julian M. & Cullen, Jonathan M. & Li, Zheng, 2012. "The use of energy in China: Tracing the flow of energy from primary source to demand drivers," Energy, Elsevier, vol. 40(1), pages 174-188.
    11. Claudia Kettner-Marx & Angela Köppl & Katharina Köberl-Schmid, 2012. "The PASHMINA Indicators for Sustainable Energy Development – How Does the EU Perform?," WIFO Studies, WIFO, number 45904.
    12. Martchamadol, Jutamanee & Kumar, S., 2014. "The Aggregated Energy Security Performance Indicator (AESPI) at national and provincial level," Applied Energy, Elsevier, vol. 127(C), pages 219-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Assessing Energy Scenarios for Austria with the ISED-AT Framework," WIFO Working Papers 496, WIFO.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Angela Köppl, 2015. "Assessing Energy Scenarios for Austria with the ISED-AT Framework," WIFO Working Papers 496, WIFO.
    2. Claudia Kettner-Marx & Angela Köppl & Sigrid Stagl, 2014. "Towards an Operational Measurement of Socio-ecological Performance. WWWforEurope Working Paper No. 52," WIFO Studies, WIFO, number 47154.
    3. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
    4. Yuancheng Lin & Chinhao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Analysis of Changes in the Aggregate Exergy Efficiency of China’s Energy System from 2005 to 2015," Energies, MDPI, vol. 14(8), pages 1-27, April.
    5. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    6. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    7. Biying Yu & Guangpu Zhao & Runying An, 2019. "Framing the picture of energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1469-1490, December.
    8. George E. Halkos & Panagiotis-Stavros C. Aslanidis, 2023. "Addressing Multidimensional Energy Poverty Implications on Achieving Sustainable Development," Energies, MDPI, vol. 16(9), pages 1-30, April.
    9. Vicente Sebastian Espinoza & Javier Fontalvo & Paola Ramírez & Jaime Martí-Herrero & Margarita Mediavilla, 2022. "Energy Transition Scenarios for Fossil Fuel Rich Developing Countries under Constraints on Oil Availability: The Case of Ecuador," Energies, MDPI, vol. 15(19), pages 1-25, September.
    10. Morley, Janine, 2018. "Rethinking energy services: The concept of ‘meta-service’ and implications for demand reduction and servicizing policy," Energy Policy, Elsevier, vol. 122(C), pages 563-569.
    11. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    12. Chong, Chin Hao & Zhou, Xiaoyong & Zhang, Yongchuang & Ma, Linwei & Bhutta, Muhammad Shoaib & Li, Zheng & Ni, Weidou, 2023. "LMDI decomposition of coal consumption in China based on the energy allocation diagram of coal flows: An update for 2005–2020 with improved sectoral resolutions," Energy, Elsevier, vol. 285(C).
    13. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    14. Konadu, D. Dennis & Mourão, Zenaida Sobral & Allwood, Julian M. & Richards, Keith S. & Kopec, Grant & McMahon, Richard & Fenner, Richard, 2015. "Land use implications of future energy system trajectories—The case of the UK 2050 Carbon Plan," Energy Policy, Elsevier, vol. 86(C), pages 328-337.
    15. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    16. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Xu Li & Chinhao Chong & Linwei Ma & Pei Liu & Xuesi Shen & Zibo Jia & Cheng Wang & Zheng Li & Weidou Ni, 2018. "Coordinating the Dynamic Development of Energy and Industry in Composite Regions: An I-SDOP Analysis of the BTH Region," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    18. Rosenberg, Eva, 2014. "Calculation method for electricity end-use for residential lighting," Energy, Elsevier, vol. 66(C), pages 295-304.
    19. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    20. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.

    More about this item

    Keywords

    sustainable energy development; composite index; energy supply; indicator set; residential buildings;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wpaper:y:2015:i:495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.