IDEAS home Printed from https://ideas.repec.org/p/umb/econwp/09115.html
   My bibliography  Save this paper

Forecasting Exchange Rates: The Multi-State Markov-Switching Model with Smoothing

Author

Abstract

This paper presents an exchange rate forecasting model which combines the multi-state Markov-switching model with smoothing techniques. The model outperforms a random walk at short horizons and its superior forecastability appears to be robust over different sample spans. Our finding hinges on the fact that exchange rates tend to follow highly persistent trends and accordingly, the key to beating the random walk is to identify these trends. An attempt to link the trends in exchange rates to the underlying macroeconomic determinants further reveals that fundamentals-based linear models generally fail to capture the persistence in exchange rates and thus are incapable of outforecasting the random walk.

Suggested Citation

  • Chunming Yuan, 2008. "Forecasting Exchange Rates: The Multi-State Markov-Switching Model with Smoothing," UMBC Economics Department Working Papers 09-115, UMBC Department of Economics, revised 01 Nov 2009.
  • Handle: RePEc:umb:econwp:09115
    as

    Download full text from publisher

    File URL: http://www.umbc.edu/economics/wpapers/wp_09_115.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    2. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    3. Kilian, Lutz & Taylor, Mark P., 2003. "Why is it so difficult to beat the random walk forecast of exchange rates?," Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
    4. Cheung, Yin-Wong & Chinn, Menzie David & Garcia Pascual, Antonio, 2003. "Empirical Exchange Rate Models of the Nineties: Are Any Fit to Survive?," Santa Cruz Department of Economics, Working Paper Series qt12z9x4c5, Department of Economics, UC Santa Cruz.
    5. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    6. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    7. Richard Meese & Kenneth Rogoff, 1983. "The Out-of-Sample Failure of Empirical Exchange Rate Models: Sampling Error or Misspecification?," NBER Chapters, in: Exchange Rates and International Macroeconomics, pages 67-112, National Bureau of Economic Research, Inc.
    8. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    9. Diebold, Francis X. & Nason, James A., 1990. "Nonparametric exchange rate prediction?," Journal of International Economics, Elsevier, vol. 28(3-4), pages 315-332, May.
    10. Simpson, Paul W & Osborn, Denise R & Sensier, Marianne, 2001. "Forecasting UK Industrial Production over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 405-424, September.
    11. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    12. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    13. Huang, Ho-Chuan (River), 2003. "Tests of regime-switching CAPM under price limits," International Review of Economics & Finance, Elsevier, vol. 12(3), pages 305-326.
    14. Wilfling, Bernd, 2009. "Volatility regime-switching in European exchange rates prior to monetary unification," Journal of International Money and Finance, Elsevier, vol. 28(2), pages 240-270, March.
    15. Ronald MacDonald & Ian W. Marsh, 1997. "On Fundamentals And Exchange Rates: A Casselian Perspective," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 655-664, November.
    16. Dueker, Michael & Neely, Christopher J., 2007. "Can Markov switching models predict excess foreign exchange returns?," Journal of Banking & Finance, Elsevier, vol. 31(2), pages 279-296, February.
    17. Harvey, A C, 1985. "Trends and Cycles in Macroeconomic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(3), pages 216-227, June.
    18. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    21. Sarno,Lucio & Taylor,Mark P., 2003. "The Economics of Exchange Rates," Cambridge Books, Cambridge University Press, number 9780521485845, September.
    22. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    23. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    24. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    25. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    26. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    27. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
    28. Cai, Jun, 1994. "A Markov Model of Switching-Regime ARCH," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 309-316, July.
    29. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    30. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
    31. Cheung, Yin-Wong & Erlandsson, Ulf G., 2005. "Exchange Rates and Markov Switching Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 314-320, July.
    32. Gelman, Sergey & Wilfling, Bernd, 2009. "Markov-switching in target stocks during takeover bids," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 745-758, December.
    33. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    34. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
    35. Richard A. Meese & Andrew K. Rose, 1991. "An Empirical Assessment of Non-Linearities in Models of Exchange Rate Determination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 603-619.
    36. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    37. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    38. Angelidis, Timotheos & Tessaromatis, Nikolaos, 2009. "Idiosyncratic risk matters! A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 18(1), pages 132-141, January.
    39. Bollen, Nicolas P. B. & Gray, Stephen F. & Whaley, Robert E., 2000. "Regime switching in foreign exchange rates: Evidence from currency option prices," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 239-276.
    40. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    41. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    42. Chinn, Menzie D. & Meese, Richard A., 1995. "Banking on currency forecasts: How predictable is change in money?," Journal of International Economics, Elsevier, vol. 38(1-2), pages 161-178, February.
    43. Filardo, Andrew J, 1994. "Business-Cycle Phases and Their Transitional Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
    44. Hau, Harald, 1998. "Competitive Entry and Endogenous Risk in the Foreign Exchange Market," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 757-787.
    45. Birchenhall, Chris R, et al, 1999. "Predicting U.S. Business-Cycle Regimes," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 313-323, July.
    46. Dewachter, Hans, 2001. "Can Markov switching models replicate chartist profits in the foreign exchange market?," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 25-41, February.
    47. Richard H. Clarida & Mark P. Taylor, 1997. "The Term Structure Of Forward Exchange Premiums And The Forecastability Of Spot Exchange Rates: Correcting The Errors," The Review of Economics and Statistics, MIT Press, vol. 79(3), pages 353-361, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirna Dumičić, 2014. "Financial Stress Indicators for Small, Open, Highly Euroised Countries – the Case of Croatia," Working Papers 41, The Croatian National Bank, Croatia.
    2. Wu, Jyh-Lin & Wang, Yi-Chiuan, 2013. "Fundamentals, forecast combinations and nominal exchange-rate predictability," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 129-145.
    3. Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
    4. Kodongo, Odongo & Ojah, Kalu, 2012. "The dynamic relation between foreign exchange rates and international portfolio flows: Evidence from Africa's capital markets," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 71-87.
    5. Jarosław Malczewski & Wawrzyniec Czubak, 2021. "Hybrid Convolutional Neural Networks Based Framework for Skimmed Milk Powder Price Forecasting," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    6. Iván Cárdenas-Gallo & Raha Akhavan-Tabatabaei & Mauricio Sánchez-Silva & Emilio Bastidas-Arteaga, 2016. "A Markov regime-switching framework to forecast El Niño Southern Oscillation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 829-843, March.
    7. Kim, Young Min & Lee, Seojin, 2020. "Exchange rate predictability: A variable selection perspective," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 117-134.
    8. Iván Cárdenas-Gallo & Raha Akhavan-Tabatabaei & Mauricio Sánchez-Silva & Emilio Bastidas-Arteaga, 2016. "A Markov regime-switching framework to forecast El Niño Southern Oscillation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 829-843, March.
    9. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models," Papers 2011.03741, arXiv.org, revised Dec 2020.
    10. Pierdzioch, Christian & Rülke, Jan-Christoph, 2015. "On the directional accuracy of forecasts of emerging market exchange rates," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 369-376.
    11. A. ISLAS & Víctor M. GUERRERO & Eliud SILVA, 2019. "Forecasting Remittances to Mexico with a Multi-State Markov-Switching Model Applied to the Trend with Controlled Smoothness," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 38-56, March.
    12. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
    13. Mirna Dumicic, 2015. "Financial stress indicators for small, open, highly euroized countries: the case of Croatia," Financial Theory and Practice, Institute of Public Finance, vol. 39(2), pages 171-203.
    14. Koki, Constandina & Leonardos, Stefanos & Piliouras, Georgios, 2022. "Exploring the predictability of cryptocurrencies via Bayesian hidden Markov models," Research in International Business and Finance, Elsevier, vol. 59(C).
    15. Shaghayegh KORDNOORI & Hamidreza MOSTAFAEI & Shirin KORDNOORI, 2015. "Applied SCGM(1,1)c Model and Weighted Markov Chain for Exchange Rate Ratios," Hyperion Economic Journal, Faculty of Economic Sciences, Hyperion University of Bucharest, Romania, vol. 3(4), pages 12-22, December.
    16. Samet G nay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
    17. repec:ipf:finteo:v:39:y:2015:i:3:p:171-203 is not listed on IDEAS
    18. Yu, Lean & Zhao, Yang & Tang, Ling, 2014. "A compressed sensing based AI learning paradigm for crude oil price forecasting," Energy Economics, Elsevier, vol. 46(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Chunming, 2011. "The exchange rate and macroeconomic determinants: Time-varying transitional dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 22(2), pages 197-220, August.
    2. Wu, Jyh-Lin & Hu, Yu-Hau, 2009. "New evidence on nominal exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 1045-1063, October.
    3. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    4. Michał Rubaszek & Paweł Skrzypczyński & Grzegorz Koloch, 2010. "Forecasting the Polish Zloty with Non-Linear Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(2), pages 151-167, March.
    5. Carlo Altavilla & Paul De Grauwe, 2010. "Non-linearities in the relation between the exchange rate and its fundamentals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-21.
    6. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    7. Richard D. F. Harris & Murat Mazibas, 2022. "A component Markov regime‐switching autoregressive conditional range model," Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 650-683, April.
    8. Frommel, Michael & MacDonald, Ronald & Menkhoff, Lukas, 2005. "Markov switching regimes in a monetary exchange rate model," Economic Modelling, Elsevier, vol. 22(3), pages 485-502, May.
    9. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    10. Cheung, Yin-Wong & Erlandsson, Ulf G., 2005. "Exchange Rates and Markov Switching Dynamics," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 314-320, July.
    11. Syllignakis, Manolis N. & Kouretas, Georgios P., 2011. "Markov-switching regimes and the monetary model of exchange rate determination: Evidence from the Central and Eastern European markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(5), pages 707-723.
    12. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    13. Cheung, Yin-Wong & Chinn, Menzie D. & Pascual, Antonio Garcia, 2005. "Empirical exchange rate models of the nineties: Are any fit to survive?," Journal of International Money and Finance, Elsevier, vol. 24(7), pages 1150-1175, November.
    14. Zsolt Darvas & Zoltán Schepp, 2007. "Forecasting Exchange Rates of Major Currencies with Long Maturity Forward Rates," Working Papers 0705, Department of Mathematical Economics and Economic Analysis, Corvinus University of Budapest.
    15. Feng, Wenjun & Zhang, Zhengjun, 2023. "Currency exchange rate predictability: The new power of Bitcoin prices," Journal of International Money and Finance, Elsevier, vol. 132(C).
    16. Sarantis, Nicholas, 2006. "On the short-term predictability of exchange rates: A BVAR time-varying parameters approach," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2257-2279, August.
    17. Christopher J. Neely & Lucio Sarno, 2002. "How well do monetary fundamentals forecast exchange rates?," Review, Federal Reserve Bank of St. Louis, vol. 84(Sep), pages 51-74.
    18. Xie, Zixiong & Chen, Shyh-Wei, 2019. "Exchange rates and fundamentals: A bootstrap panel data analysis," Economic Modelling, Elsevier, vol. 78(C), pages 209-224.
    19. Medel, Carlos & Camilleri, Gilmour & Hsu, Hsiang-Ling & Kania, Stefan & Touloumtzoglou, Miltiadis, 2015. "Robustness in Foreign Exchange Rate Forecasting Models: Economics-based Modelling After the Financial Crisis," MPRA Paper 65290, University Library of Munich, Germany.
    20. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.

    More about this item

    Keywords

    Exchange Rate; Forecasting; Markov-Switching; Smoothing; HP-Filter;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:umb:econwp:09115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christelle Viauroux (email available below). General contact details of provider: https://edirc.repec.org/data/edumbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.