IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20080028.html
   My bibliography  Save this paper

Seasonality with Trend and Cycle Interactions in Unobserved Components Models

Author

Listed:
  • Siem Jan Koopman

    (VU University Amsterdam)

  • Kai Ming Lee

    (VU University Amsterdam)

Abstract

This discussion paper resulted in a publication in the Journal of the Royal Statistical Society Series C (2009). Vol. 58, pages 427-448. Unobserved components time series models decompose a time series into a trend, a season, a cycle, an irregular disturbance, and possibly other components. These models have been successfully applied to many economic time series. The standard assumption of a linear model, often appropriate after a logarithmic transformation of the data, facilitates estimation, testing, forecasting and interpretation. However, in some settings the linear-additive framework may be too restrictive. In this paper, we formulate a non-linear unobserved components time series model which allows interactions between the trend-cycle component and the seasonal component. The resulting model is cast into a non-linear state space form and estimated by the extended Kalman filter, adapted for models with diffuse initial conditions. We apply our model to UK travel data and US unemployment and production series, and show that it can capture increasing seasonal variation and cycle dependent seasonal fluctuations.

Suggested Citation

  • Siem Jan Koopman & Kai Ming Lee, 0000. "Seasonality with Trend and Cycle Interactions in Unobserved Components Models," Tinbergen Institute Discussion Papers 08-028/4, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20080028
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/08028.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    3. Matas-Mir, Antonio & Osborn, Denise R., 2004. "Does seasonality change over the business cycle? An investigation using monthly industrial production series," European Economic Review, Elsevier, vol. 48(6), pages 1309-1332, December.
    4. Gersch, Will & Kitagawa, Genshiro, 1983. "The Prediction of Time Series with Trends and Seasonalities," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 253-264, July.
    5. Dick van Dijk 1 & Birgit Strikholm & Timo Teräsvirta, 2003. "The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 79-98, June.
    6. Commandeur, Jacques J.F. & Koopman, Siem Jan, 2007. "An Introduction to State Space Time Series Analysis," OUP Catalogue, Oxford University Press, number 9780199228874.
    7. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 169-177, April.
    8. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    9. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    10. Franses, Philip Hans, 1995. "Quarterly US Unemployment: Cycles, Seasons and Asymmetries," Empirical Economics, Springer, vol. 20(4), pages 717-725.
    11. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    12. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    13. Franses Philip Hans & de Bruin Paul, 2000. "Seasonal Adjustment and the Business Cycle in Unemployment," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(2), pages 1-14, July.
    14. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    15. Cecchetti, Stephen G & Kashyap, Anil K & Wilcox, David W, 1997. "Interactions between the Seasonal and Business Cycles in Production and Inventories," American Economic Review, American Economic Association, vol. 87(5), pages 884-892, December.
    16. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    17. S. J. Koopman & J. Durbin, 2003. "Filtering and smoothing of state vector for diffuse state‐space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(1), pages 85-98, January.
    18. Harvey, Andrew & Scott, Andrew, 1994. "Seasonality in Dynamic Regression Models," Economic Journal, Royal Economic Society, vol. 104(427), pages 1324-1345, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Altug, Sumru & Çakmaklı, Cem, 2016. "Forecasting inflation using survey expectations and target inflation: Evidence for Brazil and Turkey," International Journal of Forecasting, Elsevier, vol. 32(1), pages 138-153.
    2. Sumru Altug & Cem Cakmakli, 2014. "Inflation Targeting and Inflation Expectations: Evidence for Brazil and Turkey," Koç University-TUSIAD Economic Research Forum Working Papers 1413, Koc University-TUSIAD Economic Research Forum.
    3. Daniel Kinn, 2018. "Synthetic Control Methods and Big Data," Papers 1803.00096, arXiv.org.
    4. Steven Clark & T. Coggin, 2009. "Trends, Cycles and Convergence in U.S. Regional House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 39(3), pages 264-283, October.
    5. Irma Hindrayanto & Jan Jacobs & Denise Osborn, 2014. "On trend-cycle-seasonal interactions," DNB Working Papers 417, Netherlands Central Bank, Research Department.
    6. Paul Alagidede, 2012. "Trends And Cycles In The Net Barter Terms Of Trade For Sub-Saharan Africa's Primary Commodity Exporters," Journal of Developing Areas, Tennessee State University, College of Business, vol. 46(2), pages 213-229, July-Dece.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    2. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    3. Siem Jan Koopman & Philip Hans Franses, 2002. "Constructing Seasonally Adjusted Data with Time‐varying Confidence Intervals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 509-526, December.
    4. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    5. Massmann, Michael & Mitchell, James, 2003. "Reconsidering the evidence: Are Eurozone business cycles converging," ZEI Working Papers B 05-2003, University of Bonn, ZEI - Center for European Integration Studies.
    6. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    7. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    8. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
    9. Paul Labonne & Martin Weale, 2018. "Temporal disaggregation of overlapping noisy quarterly data using state space models: Estimation of monthly business sector output from Value Added Tax data in the UK," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-18, Economic Statistics Centre of Excellence (ESCoE).
    10. Siem Jan Koopman & John A. D. Aston, 2006. "A non-Gaussian generalization of the Airline model for robust seasonal adjustment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 325-349.
    11. Djuranovik, Leslie, 2014. "The Indonesian macroeconomy and the yield curve: A dynamic latent factor approach," Journal of Asian Economics, Elsevier, vol. 34(C), pages 1-15.
    12. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    13. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    14. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    15. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    16. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    17. Siem Jan Koopman & Soon Yip Wong, 2006. "Extracting Business Cycles using Semi-parametric Time-varying Spectra with Applications to US Macroeconomic Time Series," Tinbergen Institute Discussion Papers 06-105/4, Tinbergen Institute.
    18. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    19. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    20. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.

    More about this item

    Keywords

    Seasonal interaction; Unobserved components; Non-linear state space models;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20080028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.