IDEAS home Printed from https://ideas.repec.org/p/stm/wpaper/49.html
   My bibliography  Save this paper

A time-varying skewness model for Growth-at-Risk

Author

Listed:
  • Martin Iseringhausen

    (ESM)

Abstract

This paper studies macroeconomic risks in a panel of advanced economies based on a stochastic volatility model in which macro-financial conditions shape the predictive growth distribution. We find sizable time variation in the skewness of these distributions, conditional on the macro-financial environment. Tightening financial conditions signal increasing downside risk in the short term, but this link reverses at longer horizons. When forecasting downside risk, the proposed model, on average, outperforms existing approaches based on quantile regression and a GARCH model, especially at short horizons. In forecasting upside risk, it improves the average accuracy across all horizons up to four quarters ahead. The suggested approach can inform policy makers' assessment of macro-financial vulnerabilities by providing a timely signal of shifting risks and a quantification of their magnitude.

Suggested Citation

  • Martin Iseringhausen, 2021. "A time-varying skewness model for Growth-at-Risk," Working Papers 49, European Stability Mechanism.
  • Handle: RePEc:stm:wpaper:49
    as

    Download full text from publisher

    File URL: https://www.esm.europa.eu/sites/default/files/document/esmwp49.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Martina Hengge, 2019. "Uncertainty as a Predictor of Economic Activity," IHEID Working Papers 19-2019, Economics Section, The Graduate Institute of International Studies.
    3. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    4. McCausland, William J. & Miller, Shirley & Pelletier, Denis, 2011. "Simulation smoothing for state-space models: A computational efficiency analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 199-212, January.
    5. Henrik Jensen & Ivan Petrella & Søren Hove Ravn & Emiliano Santoro, 2020. "Leverage and Deepening Business-Cycle Skewness," American Economic Journal: Macroeconomics, American Economic Association, vol. 12(1), pages 245-281, January.
    6. Mr. Ananthakrishnan Prasad & Mr. Selim A Elekdag & Mr. Phakawa Jeasakul & Romain Lafarguette & Mr. Adrian Alter & Alan Xiaochen Feng & Changchun Wang, 2019. "Growth at Risk: Concept and Application in IMF Country Surveillance," IMF Working Papers 2019/036, International Monetary Fund.
    7. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    8. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    9. Nicholas Bloom & Fatih Guvenen & Sergio Salgado, 2016. "Skewed Business Cycles," 2016 Meeting Papers 1621, Society for Economic Dynamics.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    11. Mikkel Plagborg-Moller & Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "When Is Growth at Risk?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 51(1 (Spring), pages 167-229.
    12. Nakajima Jouchi, 2013. "Stochastic volatility model with regime-switching skewness in heavy-tailed errors for exchange rate returns," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 499-520, December.
    13. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    14. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    15. Tsiotas, Georgios, 2012. "On generalised asymmetric stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 151-172, January.
    16. Joshua C C Chan & Cody Y L Hsiao, 2013. "Estimation of Stochastic Volatility Models with Heavy Tails and Serial Dependence," CAMA Working Papers 2013-74, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    18. Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013. "Macroeconomic forecasting and structural change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
    19. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    20. Marco Del Negro & Christopher Otrok, 2008. "Dynamic factor models with time-varying parameters: measuring changes in international business cycles," Staff Reports 326, Federal Reserve Bank of New York.
    21. James Morley & Jeremy Piger, 2012. "The Asymmetric Business Cycle," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 208-221, February.
    22. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    23. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    24. Reichlin, Lucrezia & Ricco, Giovanni & Hasenzagl, Thomas, 2020. "Financial variables as predictors of real growth vulnerability," Discussion Papers 05/2020, Deutsche Bundesbank.
    25. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    26. Koop, Gary & Korobilis, Dimitris, 2014. "A new index of financial conditions," European Economic Review, Elsevier, vol. 71(C), pages 101-116.
    27. Aida Caldera Sánchez & Oliver Röhn, 2016. "How do policies influence GDP tail risks?," OECD Economics Department Working Papers 1339, OECD Publishing.
    28. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    29. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    30. Brownlees, Christian & Souza, André B.M., 2021. "Backtesting global Growth-at-Risk," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 312-330.
    31. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    32. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    33. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    34. Piergiorgio Alessandri & Haroon Mumtaz, 2017. "Financial conditions and density forecasts for US output and inflation," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 24, pages 66-78, March.
    35. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    36. Peter M. Summers, 2005. "What caused the Great Moderation? : some cross-country evidence," Economic Review, Federal Reserve Bank of Kansas City, vol. 90(Q III), pages 5-32.
    37. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed? Evidence and Explanations," Working Papers 2003-2, Princeton University. Economics Department..
    38. Carlos Montes-Galdón & Eva Ortega, 2022. "Skewed SVARs: Tracking the Structural Sources of Macroeconomic Tail Risks," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 177-210, Emerald Group Publishing Limited.
    39. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    40. Boyan Jovanovic & Sai Ma, 2022. "Uncertainty and Growth Disasters," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 44, pages 33-64, April.
    41. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    42. repec:hal:spmain:info:hdl:2441/4nn4ojjkth8qe9ci5b0hpu7ala is not listed on IDEAS
    43. Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
    44. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    45. Veldkamp, Laura & Orlik, Anna, 2014. "Understanding Uncertainty Shocks and the Role of Black Swans," CEPR Discussion Papers 10147, C.E.P.R. Discussion Papers.
    46. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    47. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    48. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    49. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
    2. Mihail Yanchev, 2022. "Deep Growth-at-Risk Model: Nowcasting the 2020 Pandemic Lockdown Recession in Small Open Economies," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 7, pages 20-41.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    2. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    3. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    4. Iseringhausen, Martin & Petrella, Ivan & Theodoridis, Konstantinos, 2021. "Aggregate Skewness and the Business Cycle," Cardiff Economics Working Papers E2021/30, Cardiff University, Cardiff Business School, Economics Section.
    5. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    6. Lhuissier, Stéphane, 2022. "Financial conditions and macroeconomic downside risks in the euro area," European Economic Review, Elsevier, vol. 143(C).
    7. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
    8. Deng, Chuang & Wu, Jian, 2023. "Macroeconomic downside risk and the effect of monetary policy," Finance Research Letters, Elsevier, vol. 54(C).
    9. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
    10. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    11. Tobias Adrian & Nina Boyarchenko & Domenico Giannone, 2019. "Vulnerable Growth," American Economic Review, American Economic Association, vol. 109(4), pages 1263-1289, April.
    12. Andrea Carriero & Francesco Corsello & Massimiliano Marcellino, 2022. "The global component of inflation volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 700-721, June.
    13. Aaron J. Amburgey & Michael W. McCracken, 2023. "On the real‐time predictive content of financial condition indices for growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 137-163, March.
    14. Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023. "Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
    15. Simon Lloyd & Ed Manuel & Konstantin Panchev, 2024. "Foreign Vulnerabilities, Domestic Risks: The Global Drivers of GDP-at-Risk," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(1), pages 335-392, March.
    16. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    17. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024. "Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
    19. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    20. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2023. "Out-of-sample tests for conditional quantile coverage an application to Growth-at-Risk," Journal of Econometrics, Elsevier, vol. 236(2).

    More about this item

    Keywords

    Bayesian analysis; downside risk; macro-financial linkages; time variation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:stm:wpaper:49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Karol SISKIND (email available below). General contact details of provider: https://edirc.repec.org/data/efseulu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.