IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/201115.html
   My bibliography  Save this paper

Some Variables are More Worthy Than Others: New Diffusion Index Evidence on the Monitoring of Key Economic Indicators

Author

Listed:
  • Norman R. Swanson

    (Rutgers University)

  • Nii Ayi Armah

    (Bank of Canada)

Abstract

Central banks regularly monitor select financial and macroeconomic variables in order to obtain early indication of the impact of monetary policies. This practice is discussed on the Federal Reserve Bank of New York website, for example, where one particular set of macroeconomic “indicators” is given. In this paper, we define a particular set of “indicators” that is chosen to be representative of the typical sort of variable used in practice by both policy-setters and economic forecasters. As a measure of the “adequacy” of the “indicators”, we compare their predictive content with that of a group of observable factor proxies selected from amongst 132 macroeconomic and financial time series, using the diffusion index methodology of Stock and Watson (2002a,b) and the factor proxy methodology of Bai and Ng (2006a,b) and Armah and Swanson (2010). The variables that we predict are output growth and inflation, two representative variables from our set of indicators that are often discussed when assessing the impact of monetary policy. Interestingly, we find that that indicators are all contained within the set the observable variables that proxy our factors. Our findings, thus, support the notion that a judiciously chosen set of macroeconomic indicators can effectively provide the same macroeconomic policy-relevant information as that contained in a largescale time series dataset. Of course, the large-scale datasets are still required in order to select the key indicator variables or confirm one’s prior choice of key variables. Our findings also suggest that certain yield “spreads” are also useful indicators. The particular spreads that we find to be useful are the difference between Treasury or corporate yields and the federal funds rate. After conditioning on these variables, traditional spreads, such as the yield curve slope and the reverse yield gap are found to contain no additional marginal predictive content. We also find that the macroeconomic indicators (not including spreads) perform best when forecasting inflation in non-volatile time periods, while inclusion of our spread variables improves predictive accuracy in times of high volatility.

Suggested Citation

  • Norman R. Swanson & Nii Ayi Armah, 2011. "Some Variables are More Worthy Than Others: New Diffusion Index Evidence on the Monitoring of Key Economic Indicators," Departmental Working Papers 201115, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:201115
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2011-15.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Reichlin, Lucrezia, 1996. "Dynamic Common Factors in Large Cross-Sections," Empirical Economics, Springer, vol. 21(1), pages 27-42.
    3. Andrea Nobili, 2005. "Forecasting Output Growth And Inflation In The Euro Area: Are Financial Spreads Useful?," Temi di discussione (Economic working papers) 544, Bank of Italy, Economic Research and International Relations Area.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    6. E. P. Davis & S. G. B. Henry, 1994. "The Use of Financial Spreads as Indicator Variables: Evidence for the United Kingdom and Germany," IMF Staff Papers, Palgrave Macmillan, vol. 41(3), pages 517-525, September.
    7. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    8. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    9. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    10. Jorion, Philippe & Mishkin, Frederic, 1991. "A multicountry comparison of term-structure forecasts at long horizons," Journal of Financial Economics, Elsevier, vol. 29(1), pages 59-80, March.
    11. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    14. Davis, E Philip & Henry, S G B & Pesaran, B, 1994. "The Role of Financial Spreads: Empirical Analysis of Spreads and Real Activity," The Manchester School of Economic & Social Studies, University of Manchester, vol. 62(4), pages 374-394, December.
    15. Catherine Bonser-Neal & Timothy R. Morley, 1997. "Does the yield spread predict real economic activity? : a multicountry analysis," Economic Review, Federal Reserve Bank of Kansas City, vol. 82(Q III), pages 37-53.
    16. Gerlach, Stefan, 1997. "The Information Content of the Term Structure: Evidence for Germany," Empirical Economics, Springer, vol. 22(2), pages 161-179.
    17. Benjamin M. Friedman & Kenneth Kuttner, 1993. "Why Does the Paper-Bill Spread Predict Real Economic Activity?," NBER Chapters, in: Business Cycles, Indicators, and Forecasting, pages 213-254, National Bureau of Economic Research, Inc.
    18. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    19. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
    20. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    21. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    22. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    23. Davis, E Philip & Fagan, Gabriel, 1997. "Are Financial Spreads Useful Indicators of Future Inflation and Output Growth in EU Countries?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(6), pages 701-714, Nov.-Dec..
    24. E. P. Davis & S. G. B. Henry, 1994. "The Use of Financial Spreads As Indicator Variables: Evidence for the U.K. and Germany," IMF Working Papers 1994/031, International Monetary Fund.
    25. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    26. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    27. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    28. Harvey, Campbell R., 1988. "The real term structure and consumption growth," Journal of Financial Economics, Elsevier, vol. 22(2), pages 305-333, December.
    29. Plosser, Charles I. & Geert Rouwenhorst, K., 1994. "International term structures and real economic growth," Journal of Monetary Economics, Elsevier, vol. 33(1), pages 133-155, February.
    30. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    31. Forni, Mario & Reichlin, Lucrezia, 1995. "Let's Get Real: A Dynamic Factor Analytical Approach to Disaggregated Business Cycle," CEPR Discussion Papers 1244, C.E.P.R. Discussion Papers.
    32. Mishkin, Frederic S., 1991. "A multi-country study of the information in the shorter maturity term structure about future inflation," Journal of International Money and Finance, Elsevier, vol. 10(1), pages 2-22, March.
    33. Francis X. Diebold & Glenn D. Rudebusch, 1989. "Forecasting output with the composite leading index: an ex ante analysis," Finance and Economics Discussion Series 90, Board of Governors of the Federal Reserve System (U.S.).
    34. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    35. Robert D. Laurent, 1988. "An interest rate-based indicator of monetary policy," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 12(Jan), pages 3-14.
    36. Sharon Kozicki, 1997. "Predicting real growth and inflation with the yield spread," Economic Review, Federal Reserve Bank of Kansas City, vol. 82(Q IV), pages 39-57.
    37. Swanson, Norman R & White, Halbert, 1995. "A Model-Selection Approach to Assessing the Information in the Term Structure Using Linear Models and Artificial Neural Networks," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 265-275, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    2. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    3. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
    4. Yucel, Eray, 2011. "A Review and Bibliography of Early Warning Models," MPRA Paper 32893, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    2. Andrea Nobili, 2005. "Forecasting Output Growth And Inflation In The Euro Area: Are Financial Spreads Useful?," Temi di discussione (Economic working papers) 544, Bank of Italy, Economic Research and International Relations Area.
    3. Hamilton, James D & Kim, Dong Heon, 2002. "A Reexamination of the Predictability of Economic Activity Using the Yield Spread," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(2), pages 340-360, May.
    4. Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
    5. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    6. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    7. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    8. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    9. Leo Krippner, 2005. "Investigating the Relationships between the Yield Curve, Output and Inflation using an Arbitrage-Free Version of the Nelson and Siegel Class of Yield Curve Models," Working Papers in Economics 05/02, University of Waikato.
    10. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    11. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    12. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    13. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    14. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    15. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    16. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    17. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    18. Harald Grech, 2004. "What Do German Short-Term Interest Rates Tell Us About Future Inflation?," Working Papers 94, Oesterreichische Nationalbank (Austrian Central Bank).
    19. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    20. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.

    More about this item

    Keywords

    diffusion index; factor; forecast; macroeconometrics; monetary policy; parameter estimation error; proxy; federal reserve bank;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.