IDEAS home Printed from https://ideas.repec.org/p/qmw/qmwecw/799.html
   My bibliography  Save this paper

Forecasting the Brazilian Yield Curve Using Forward-Looking Variables

Author

Listed:
  • Fausto Vieira

    (Fundação Getulio Vargas (FGV))

  • Fernando Chague

    (University of São Paulo)

  • Marcelo Fernandes

    (Queen Mary University of London)

Abstract

This paper proposes a forecasting model that combines a factor augmented VAR (FAVAR) methodology with the Nelson and Siegel (NS) parametrization of the yield curve to predict the Brazilian term structure of interest rates. Importantly, we extract the principal components for the FAVAR from a large data set containing forward-looking macroeconomic and financial variables. Our forecasting model significantly improves the predicting accuracy of extant models in the literature, particularly at short-term horizons. For instance, the mean absolute forecast errors are 15-40% lower than the random walk benchmark on predictions at the three month horizon. The out-of-sample analysis shows that including forward-looking indicators is the key to improve the predictive ability of the model.

Suggested Citation

  • Fausto Vieira & Fernando Chague & Marcelo Fernandes, 2016. "Forecasting the Brazilian Yield Curve Using Forward-Looking Variables," Working Papers 799, Queen Mary University of London, School of Economics and Finance.
  • Handle: RePEc:qmw:qmwecw:799
    as

    Download full text from publisher

    File URL: https://www.qmul.ac.uk/sef/media/econ/research/workingpapers/2016/items/wp799.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Carlo Altavilla & Raffaella Giacomini & Riccardo Costantini, 2014. "Bond Returns and Market Expectations," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 708-729.
    2. Peter Exterkate & Dick Van Dijk & Christiaan Heij & Patrick J. F. Groenen, 2013. "Forecasting the Yield Curve in a Data‐Rich Environment Using the Factor‐Augmented Nelson–Siegel Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(3), pages 193-214, April.
    3. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    6. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    7. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    8. Scott Joslin & Kenneth J. Singleton & Haoxiang Zhu, 2011. "A New Perspective on Gaussian Dynamic Term Structure Models," The Review of Financial Studies, Society for Financial Studies, vol. 24(3), pages 926-970.
    9. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    10. Vicente, José & Tabak, Benjamin M., 2008. "Forecasting bond yields in the Brazilian fixed income market," International Journal of Forecasting, Elsevier, vol. 24(3), pages 490-497.
    11. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    12. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    13. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    14. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    17. Almeida, Caio & Faria, Adriano, 2014. "Forecasting the Brazilian Term Structure Using Macroeconomic Factors," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(1), March.
    18. Diebold, Francis X. & Rudebusch, Glenn D. & Borag[caron]an Aruoba, S., 2006. "The macroeconomy and the yield curve: a dynamic latent factor approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 309-338.
    19. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    20. Goncalves, Silvia & White, Halbert, 2005. "Bootstrap Standard Error Estimates for Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 970-979, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Frois Caldeira & Rangan Gupta & Muhammad Tahir Suleman & Hudson S. Torrent, 2021. "Forecasting the Term Structure of Interest Rates of the BRICS: Evidence from a Nonparametric Functional Data Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 57(15), pages 4312-4329, December.
    2. Fausto Vieira & Fernando Chague, Marcelo Fernandes, 2016. "A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US," Working Papers, Department of Economics 2016_31, University of São Paulo (FEA-USP).
    3. Ronald Ravinesh Kumar & Peter Josef Stauvermann & Hang Thi Thu Vu, 2021. "The Relationship between Yield Curve and Economic Activity: An Analysis of G7 Countries," JRFM, MDPI, vol. 14(2), pages 1-23, February.
    4. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    5. Firdous Ahmad Shah & Lokenath Debnath, 2017. "Wavelet Neural Network Model for Yield Spread Forecasting," Mathematics, MDPI, vol. 5(4), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.
    2. Fausto Vieira & Fernando Chague, Marcelo Fernandes, 2016. "A dynamic Nelson-Siegel model with forward-looking indicators for the yield curve in the US," Working Papers, Department of Economics 2016_31, University of São Paulo (FEA-USP).
    3. Carlo A. Favero & Linlin Niu & Luca Sala, 2012. "Term Structure Forecasting: No‐Arbitrage Restrictions versus Large Information Set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(2), pages 124-156, March.
    4. Koopman, Siem Jan & van der Wel, Michel, 2013. "Forecasting the US term structure of interest rates using a macroeconomic smooth dynamic factor model," International Journal of Forecasting, Elsevier, vol. 29(4), pages 676-694.
    5. Evangelos Salachas & Georgios P. Kouretas & Nikiforos T. Laopodis, 2024. "The term structure of interest rates and economic activity: Evidence from the COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1018-1041, July.
    6. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," SIRE Discussion Papers 2015-71, Scottish Institute for Research in Economics (SIRE).
    7. Moench, Emanuel, 2008. "Forecasting the yield curve in a data-rich environment: A no-arbitrage factor-augmented VAR approach," Journal of Econometrics, Elsevier, vol. 146(1), pages 26-43, September.
    8. Caio Almeida & Kym Ardison & Daniela Kubudi & Axel Simonsen & José Vicente, 2018. "Forecasting Bond Yields with Segmented Term Structure Models," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 1-33.
    9. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    10. Carriero, Andrea & Kapetanios, George & Marcellino, Massimiliano, 2012. "Forecasting government bond yields with large Bayesian vector autoregressions," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2026-2047.
    11. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    12. Pang, Iris Ai Jao, 2010. "Forecasting Hong Kong economy using factor augmented vector autoregression," MPRA Paper 32495, University Library of Munich, Germany.
    13. P. Byrne, Joseph & Cao, Shuo & Korobilis, Dimitris, 2015. "Term Structure Dynamics, Macro-Finance Factors and Model Uncertainty," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-71, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Almeida, Caio & Faria, Adriano, 2014. "Forecasting the Brazilian Term Structure Using Macroeconomic Factors," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 34(1), March.
    15. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2017. "Forecasting the term structure of government bond yields in unstable environments," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 209-225.
    16. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    17. Adam Traczyk, 2013. "Financial integration and the term structure of interest rates," Empirical Economics, Springer, vol. 45(3), pages 1267-1305, December.
    18. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    19. Jushan Bai & Kunpeng Li, 2016. "Maximum Likelihood Estimation and Inference for Approximate Factor Models of High Dimension," The Review of Economics and Statistics, MIT Press, vol. 98(2), pages 298-309, May.
    20. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.

    More about this item

    Keywords

    Bonds; Factor-augmented VAR; Forecasting; term structure; Yield curve;
    All these keywords.

    JEL classification:

    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qmw:qmwecw:799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nicholas Owen (email available below). General contact details of provider: https://edirc.repec.org/data/deqmwuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.