IDEAS home Printed from https://ideas.repec.org/p/qld/uqcepa/12.html
   My bibliography  Save this paper

Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities

Author

Abstract

We estimate an input distance function for U.S. electric utilities under the assumption that non-negative variables associated with technical inefficiency are timeinvariant. We use Bayesian methodology to impose curvature restrictions implied by microeconomic theory and obtain exact finite-sample results for nonlinear functions of the parameters (eg. technical efficiency scores). We find that Bayesian point estimates of elasticities are more plausible than maximum likelihood estimates, technical efficiency scores from a random effects specification are higher than those obtained from a fixed effects model, and there is evidence of increasing returns to scale in the industry.

Suggested Citation

  • Supawat Rungsuriyawiboon & Chris O'Donnell, 2004. "Curvature-Constrained Estimates of Technical Efficiency and Returns to Scale for U.S. Electric Utilities," CEPA Working Papers Series WP072004, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:12
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/5331/WP072004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    2. Rungsuriyawiboon, Supawat & Stefanou, Spiro E., 2007. "Dynamic Efficiency Estimation: An Application to U.S. Electric Utilities," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 226-238, April.
    3. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    4. Canterbery, E.R. & Reading, D. & Johnson, B., 1991. "Cost Savings from Nuclear Regulatory Reform: A Econometric Model," Working Papers 1991_05_2, Department of Economics, Florida State University.
    5. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    6. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, April.
    7. Gary Koop & Mark F J Steel, 1999. "Bayesian Analysis of Stochastic Frontier Models," Edinburgh School of Economics Discussion Paper Series 19, Edinburgh School of Economics, University of Edinburgh.
    8. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    9. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    10. Fare, Rolf, et al, 1993. "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," The Review of Economics and Statistics, MIT Press, vol. 75(2), pages 374-380, May.
    11. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    12. Koop, Gary & Steel, Mark F.J. & Osiewalski, Jacek, 1992. "Posterior analysis of stochastic frontier models using Gibbs sampling," DES - Working Papers. Statistics and Econometrics. WS 3677, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    14. Atkinson, Scott E. & Primont, Daniel, 2002. "Stochastic estimation of firm technology, inefficiency, and productivity growth using shadow cost and distance functions," Journal of Econometrics, Elsevier, vol. 108(2), pages 203-225, June.
    15. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    16. Jacek Osiewalski & Mark Steel, 1998. "Numerical Tools for the Bayesian Analysis of Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 10(1), pages 103-117, July.
    17. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    18. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    19. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    20. Grosskopf, S. & Margaritis, D. & Valdmanis, V., 1995. "Estimating output substitutability of hospital services: A distance function approach," European Journal of Operational Research, Elsevier, vol. 80(3), pages 575-587, February.
    21. Yangseon Kim & Peter Schmidt, 2000. "A Review and Empirical Comparison of Bayesian and Classical Approaches to Inference on Efficiency Levels in Stochastic Frontier Models with Panel Data," Journal of Productivity Analysis, Springer, vol. 14(2), pages 91-118, September.
    22. Timothy J. Considine, 2000. "Cost Structures for Fossil Fuel-Fired Electric Power Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 83-104.
    23. John M. Marshall & Peter Navarro, 1991. "Costs of Nuclear Power Plant Construction: Theory and New Evidence," RAND Journal of Economics, The RAND Corporation, vol. 22(1), pages 148-154, Spring.
    24. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    25. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    26. Battese, George E. & Coelli, Tim J. & Colby, T.C., 1989. "Estimation of Frontier Production Functions and the Efficiencies of Indian Farms Using Panel Data from ICRISAT's Village Level Studies," 1989 Conference (33rd), February 7-9, 1989, Christchurch, New Zealand 144383, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Growitsch & Tooraj Jamasb & Michael Pollitt, 2009. "Quality of service, efficiency and scale in network industries: an analysis of European electricity distribution," Applied Economics, Taylor & Francis Journals, vol. 41(20), pages 2555-2570.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis R. Murillo‐Zamorano, 2004. "Economic Efficiency and Frontier Techniques," Journal of Economic Surveys, Wiley Blackwell, vol. 18(1), pages 33-77, February.
    2. O'Donnell, Christopher J. & Coelli, Timothy J., 2005. "A Bayesian approach to imposing curvature on distance functions," Journal of Econometrics, Elsevier, vol. 126(2), pages 493-523, June.
    3. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    4. Tim J. Coelli, 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 219-245, December.
    5. Fernandez, Carmen & Osiewalski, Jacek & Steel, Mark F. J., 1997. "On the use of panel data in stochastic frontier models with improper priors," Journal of Econometrics, Elsevier, vol. 79(1), pages 169-193, July.
    6. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2010. "A Stochastic Frontier Model for Discrete Ordinal Outcomes: A Health Production Function," Department of Economics - Working Papers Series 1092, The University of Melbourne.
    7. Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
    8. Mike Tsionas & Marwan Izzeldin & Arne Henningsen & Evaggelos Paravalos, 2022. "Addressing endogeneity when estimating stochastic ray production frontiers: a Bayesian approach," Empirical Economics, Springer, vol. 62(3), pages 1345-1363, March.
    9. William Griffiths & Xiaohui Zhang & Xueyan Zhao, 2014. "Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes," Journal of Productivity Analysis, Springer, vol. 42(1), pages 67-84, August.
    10. Fernández, C. & Osiewalski, J. & Steel, M.F.J., 1996. "On the Use of Panel Data in Bayesian Stochastic Frontier Models," Other publications TiSEM d27e7bcf-bb16-457a-934a-a, Tilburg University, School of Economics and Management.
    11. Dong, Xiao-yuan & Putterman, Louis, 1997. "Productivity and Organization in China's Rural Industries: A Stochastic Frontier Analysis," Journal of Comparative Economics, Elsevier, vol. 24(2), pages 181-201, April.
    12. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    13. William C. Horrace & Peter Schmidt, 2002. "Confidence Statements for Efficiency Estimates from Stochastic Frontier Models," Econometrics 0206006, University Library of Munich, Germany.
    14. Yangseon Kim & Peter Schmidt, 2000. "A Review and Empirical Comparison of Bayesian and Classical Approaches to Inference on Efficiency Levels in Stochastic Frontier Models with Panel Data," Journal of Productivity Analysis, Springer, vol. 14(2), pages 91-118, September.
    15. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    16. Cullmann, Astrid & Farsi, Mehdi & Filippini Massimo, 2009. "Unobserved Heterogeneity and International Benchmarking in Public Trasport," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0904, USI Università della Svizzera italiana.
    17. William C. Horrace & Peter Schmidt, 2000. "Multiple comparisons with the best, with economic applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 1-26.
    18. Massimo Del Gatto & Adriana Di Liberto & Carmelo Petraglia, 2011. "Measuring Productivity," Journal of Economic Surveys, Wiley Blackwell, vol. 25(5), pages 952-1008, December.
    19. Ayadi, Ahmed & Hammami, Sami, 2015. "An analysis of the performance of public bus transport in Tunisian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 51-60.
    20. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.