IDEAS home Printed from https://ideas.repec.org/p/pre/wpaper/202179.html
   My bibliography  Save this paper

El Nino, La Nina, and Forecastability of the Realized Variance of Agricultural Commodity Prices: Evidence from a Machine Learning Approach

Author

Listed:
  • Matteo Bonato

    (Department of Economics and Econometrics, University of Johannesburg, Auckland Park, South Africa; IPAG Business School, 184 Boulevard Saint-Germain, 75006 Paris, France)

  • Oguzhan Cepni

    (Copenhagen Business School, Department of Economics, Porcelaenshaven 16A, Frederiksberg DK-2000, Denmark; Central Bank of the Republic of Turkey, Haci Bayram Mah. Istiklal Cad. No:10 06050, Ankara, Turkey)

  • Rangan Gupta

    (Department of Economics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa)

  • Christian Pierdzioch

    (Department of Economics, Helmut Schmidt University, Holstenhofweg 85, P.O.B. 700822, 22008 Hamburg, Germany)

Abstract

We examine the predictive value of El Nino and La Nina weather episodes for the subsequent realized variance of 16 agricultural commodity prices. To this end, we use high-frequency data covering the period from 2009 to 2020 to estimate the realized variance along realized skewness, realized kurtosis, realized jumps, and realized upside and downside tail risks as control variables. Accounting for the impact of the control variables as well as spillover effects from the realized variances of the other agricultural commodities in our sample, we estimate an extended heterogeneous autoregressive (HAR) model by means of random forests to capture in a purely data-driven way potentially nonlinear links between El Nino and La Nina and the subsequent realized variance. We document such nonlinear links, and that El Nino and La Nina increase forecast accuracy, especially at longer forecast horizons, for several of the the agricultural commodities that we study in this research.

Suggested Citation

  • Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2021. "El Nino, La Nina, and Forecastability of the Realized Variance of Agricultural Commodity Prices: Evidence from a Machine Learning Approach," Working Papers 202179, University of Pretoria, Department of Economics.
  • Handle: RePEc:pre:wpaper:202179
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toshichika Iizumi & Jing-Jia Luo & Andrew J. Challinor & Gen Sakurai & Masayuki Yokozawa & Hirofumi Sakuma & Molly E. Brown & Toshio Yamagata, 2014. "Impacts of El Niño Southern Oscillation on the global yields of major crops," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    2. Ioannis Chatziantoniou, Stavros Degiannakis, George Filis, and Tim Lloyd, 2021. "Oil price volatility is effective in predicting food price volatility. Or is it?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    4. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    5. Andrea Bastianin & Alessandro Lanza & Matteo Manera, 2018. "Economic impacts of El Niño southern oscillation: evidence from the Colombian coffee market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 623-633, September.
    6. Yang, Ke & Tian, Fengping & Chen, Langnan & Li, Steven, 2017. "Realized volatility forecast of agricultural futures using the HAR models with bagging and combination approaches," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 276-291.
    7. Allan D. Brunner, 2002. "El Niño and World Primary Commodity Prices: Warm Water or Hot Air?," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 176-183, February.
    8. Egelkraut, Thorsten M. & Garcia, Philip, 2006. "Intermediate Volatility Forecasts Using Implied Forward Volatility: The Performance of Selected Agricultural Commodity Options," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-21, December.
    9. Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2018. "Using low frequency information for predicting high frequency variables," International Journal of Forecasting, Elsevier, vol. 34(4), pages 774-787.
    10. Daniele Girardi, 2015. "Financialization of food . Modelling the time-varying relation between agricultural prices and stock market dynamics," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(4), pages 482-505, July.
    11. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    12. Alanoud Al-Maadid & Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2017. "Spillovers between food and energy prices and structural breaks," International Economics, CEPII research center, issue 150, pages 1-18.
    13. Manuel A. Hernandez & Raul Ibarra & Danilo R. Trupkin, 2014. "How far do shocks move across borders? Examining volatility transmission in major agricultural futures markets," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(2), pages 301-325.
    14. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    15. Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
    16. Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
    17. Jasper Anderluh & Svetlana Borovkova, 2008. "Commodity volatility modelling and option pricing with a potential function approach," The European Journal of Finance, Taylor & Francis Journals, vol. 14(2), pages 91-113.
    18. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    19. Ubilava, David, 2017. "The ENSO Effect and Asymmetries in Wheat Price Dynamics," World Development, Elsevier, vol. 96(C), pages 490-502.
    20. David Ubilava, 2018. "The Role of El Niño Southern Oscillation in Commodity Price Movement and Predictability," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(1), pages 239-263.
    21. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    22. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    23. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    24. Rietz, Thomas A., 1988. "The equity risk premium a solution," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 117-131, July.
    25. Etienne, Xiaoli L. & Trujillo-Barrera, Andrés & Hoffman, Linwood A., 2017. "Volatility Spillover and Time-Varying Conditional Correlation Between DDGS, Corn, and Soybean Meal Markets," Agricultural and Resource Economics Review, Cambridge University Press, vol. 46(3), pages 529-554, December.
    26. David Ubilava, 2014. "El Niño Southern Oscillation and the fishmeal–soya bean meal price ratio: regime-dependent dynamics revisited," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(4), pages 583-604.
    27. Beckmann, Joscha & Czudaj, Robert, 2014. "Volatility transmission in agricultural futures markets," Economic Modelling, Elsevier, vol. 36(C), pages 541-546.
    28. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    29. Fengping Tian & Ke Yang & Langnan Chen, 2017. "Realized Volatility Forecasting of Agricultural Commodity Futures Using Long Memory and Regime Switching," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(4), pages 421-430, July.
    30. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    31. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    32. Meng Qin & Lian-Hong Qiu & Ran Tao & Muhammad Umar & Chi-Wei Su & Wen Jiao, 2020. "The inevitable role of El Niño: a fresh insight into the oil market," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 33(1), pages 1943-1962, January.
    33. Robert J. Barro, 2009. "Rare Disasters, Asset Prices, and Welfare Costs," American Economic Review, American Economic Association, vol. 99(1), pages 243-264, March.
    34. Xavier Gabaix, 2012. "Variable Rare Disasters: An Exactly Solved Framework for Ten Puzzles in Macro-Finance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(2), pages 645-700.
    35. David Ubilava & Matt Holt, 2013. "El Niño southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 273-297, April.
    36. Robert J. Barro, 2006. "Rare Disasters and Asset Markets in the Twentieth Century," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(3), pages 823-866.
    37. Giot, Pierre & Laurent, Sébastien & Petitjean, Mikael, 2010. "Trading activity, realized volatility and jumps," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 168-175, January.
    38. Na Li & Alan Ker & Abdoul G. Sam & Satheesh Aradhyula, 2017. "Modeling regime-dependent agricultural commodity price volatilities," Agricultural Economics, International Association of Agricultural Economists, vol. 48(6), pages 683-691, November.
    39. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    40. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    41. Bonato, Matteo, 2019. "Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 184-202.
    42. Cashin, Paul & Mohaddes, Kamiar & Raissi, Mehdi, 2017. "Fair weather or foul? The macroeconomic effects of El Niño," Journal of International Economics, Elsevier, vol. 106(C), pages 37-54.
    43. Ouyang, Ruolan & Zhang, Xuan, 2020. "Financialization of agricultural commodities: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 381-389.
    44. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    45. John Elder & Hyun J. Jin, 2007. "Long memory in commodity futures volatility: A wavelet perspective," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(5), pages 411-437, May.
    46. David Ubilava & Matt Holt, 2013. "El Niño southern oscillation and its effects on world vegetable oil prices: assessing asymmetries using smooth transition models," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(2), pages 273-297, April.
    47. Luis A. Gil-Alana & Juncal Cunado & Fernando Pérez de Gracia, 2012. "Persistence, Long Memory, and Unit Roots in Commodity Prices," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(4), pages 451-468, December.
    48. Ordu, Beyza Mina & Oran, Adil & Soytas, Ugur, 2018. "Is food financialized? Yes, but only when liquidity is abundant," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 82-96.
    49. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    50. Atems, Bebonchu & Sardar, Naafey, 2021. "Exploring asymmetries in the effects of El Niño-Southern Oscillation on U.S. food and agricultural stock prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    2. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2088-2125, September.
    2. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2024. "Financial stress and realized volatility: The case of agricultural commodities," Research in International Business and Finance, Elsevier, vol. 71(C).
    3. Rangan Gupta & Christian Pierdzioch, 2024. "Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices," Mathematics, MDPI, vol. 12(18), pages 1-26, September.
    4. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    5. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
    6. Salisu, Afees A. & Gupta, Rangan & Nel, Jacobus & Bouri, Elie, 2022. "The (Asymmetric) effect of El Niño and La Niña on gold and silver prices in a GVAR model," Resources Policy, Elsevier, vol. 78(C).
    7. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    8. Rangan Gupta & Christian Pierdzioch, 2021. "Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment," Energies, MDPI, vol. 14(23), pages 1-18, December.
    9. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    10. Mehmet Balcilar & Elie Bouri & Rangan Gupta & Christian Pierdzioch, 2021. "El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    11. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    12. Mohammad Reza Yeganegi & Hossein Hassani & Rangan Gupta, 2023. "The ENSO cycle and forecastability of global inflation and output growth: Evidence from standard and mixed‐frequency multivariate singular spectrum analyses," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1690-1707, November.
    13. Atems, Bebonchu & Sardar, Naafey, 2021. "Exploring asymmetries in the effects of El Niño-Southern Oscillation on U.S. food and agricultural stock prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 1-14.
    14. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
    15. Bonato, Matteo & Çepni, Oğuzhan & Gupta, Rangan & Pierdzioch, Christian, 2021. "Do oil-price shocks predict the realized variance of U.S. REITs?," Energy Economics, Elsevier, vol. 104(C).
    16. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    17. Wei, Yu & Zhang, Jiahao & Chen, Yongfei & Wang, Yizhi, 2022. "The impacts of El Niño-southern oscillation on renewable energy stock markets: Evidence from quantile perspective," Energy, Elsevier, vol. 260(C).
    18. Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022. "Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
    19. Zhu, Yichen & Ghoshray, Atanu, 2021. "Climate Anomalies and Its Impact on U.S. Corn and Soybean Prices," 2021 Conference, August 17-31, 2021, Virtual 315271, International Association of Agricultural Economists.
    20. Hernan Botero & Andrew P. Barnes, 2022. "The effect of ENSO on common bean production in Colombia: a time series approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1417-1430, December.

    More about this item

    Keywords

    Agricultural commodities; El Nino and La Nina; Realized variance; Forecasting; Random Forests;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pre:wpaper:202179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rangan Gupta (email available below). General contact details of provider: https://edirc.repec.org/data/decupza.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.