Latent Factor Models for Credit Scoring in P2P Systems
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ahelegbey, Daniel Felix & Giudici, Paolo & Hadji-Misheva, Branka, 2019. "Latent factor models for credit scoring in P2P systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 112-121.
References listed on IDEAS
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Daniele Durante & David B. Dunson, 2014. "Nonparametric Bayes dynamic modelling of relational data," Biometrika, Biometrika Trust, vol. 101(4), pages 883-898.
- Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012.
"Econometric measures of connectedness and systemic risk in the finance and insurance sectors,"
Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
- Monica Billio & Mila Getmansky & Andrew W. Lo & Loriana Pelizzon, 2010. "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors," NBER Chapters, in: Market Institutions and Financial Market Risk, National Bureau of Economic Research, Inc.
- Monica Billio & Mila Getmansky & Andrew W. Lo & Loriana Pelizzon, 2011. "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors," Working Papers 2011_21, Department of Economics, University of Venice "Ca' Foscari".
- Paolo Giudici, 2001. "Bayesian data mining, with application to benchmarking and credit scoring," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(1), pages 69-81, January.
- Minoiu, Camelia & Reyes, Javier A., 2013. "A network analysis of global banking: 1978–2010," Journal of Financial Stability, Elsevier, vol. 9(2), pages 168-184.
- Chinazzi, Matteo & Fagiolo, Giorgio & Reyes, Javier A. & Schiavo, Stefano, 2013.
"Post-mortem examination of the international financial network,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1692-1713.
- Matteo Chinazzi & Giorgio Fagiolo & Javier A. Reyes & Stefano Schiavo, 2012. "Post-Mortem Examination of the International Financial Network," Department of Economics Working Papers 1202, Department of Economics, University of Trento, Italia.
- Matteo Chinazzi & Giorgio Fagiolo & Javier A. Reyes & Stefano Schiavo, 2012. "Post-Mortem Examination of the International Financial Network," LEM Papers Series 2012/04, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- P. Giudici & A. Spelta, 2016.
"Graphical Network Models for International Financial Flows,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 128-138, January.
- Paolo Giudici & Alessandro Spelta, 2013. "Graphical network models for international financial flows," DEM Working Papers Series 052, University of Pavia, Department of Economics and Management.
- Luis Javier Sánchez Barrios & Galina Andreeva & Jake Ansell, 2014. "Monetary and relative scorecards to assess profits in consumer revolving credit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 443-453, March.
- Elisa Letizia & Fabrizio Lillo, 2017. "Corporate payments networks and credit risk rating," Papers 1711.07677, arXiv.org, revised Sep 2018.
- Riza Emekter & Yanbin Tu & Benjamas Jirasakuldech & Min Lu, 2015. "Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending," Applied Economics, Taylor & Francis Journals, vol. 47(1), pages 54-70, January.
- Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
- Barfuss, Wolfram & Massara, Guido Previde & Di Matteo, T. & Aste, Tomaso, 2016. "Parsimonious modeling with information filtering networks," LSE Research Online Documents on Economics 68860, London School of Economics and Political Science, LSE Library.
- Andrew Briggs & Taane Clark & Jane Wolstenholme & Philip Clarke, 2003. "Missing.... presumed at random: cost‐analysis of incomplete data," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 377-392, May.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Bayesian Graphical Models for STructural Vector Autoregressive Processes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2012. "Bayesian Graphical Models for Structural Vector Autoregressive Processes," Working Papers 2012:36, Department of Economics, University of Venice "Ca' Foscari".
- Raffaella Calabrese & Paolo Giudici, 2015. "Estimating bank default with generalised extreme value regression models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(11), pages 1783-1792, November.
- Paolo Giudici & Laura Parisi, 2017. "Sovereign risk in the Euro area: a multivariate stochastic process approach," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1995-2008, December.
- Andreeva, Galina & Ansell, Jake & Crook, Jonathan, 2007. "Modelling profitability using survival combination scores," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1537-1549, December.
- Hoff, Peter D., 2007. "Model Averaging and Dimension Selection for the Singular Value Decomposition," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 674-685, June.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- Milne, Alistair & Parboteeah, Paul, 2016. "The Business Models and Economics of Peer-to-Peer Lending," ECRI Papers 11594, Centre for European Policy Studies.
- Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
- Aste, T. & Di Matteo, T. & Hyde, S.T., 2005. "Complex networks on hyperbolic surfaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 20-26.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Xiao & Chong, Zhaohui & Giudici, Paolo & Huang, Bihong, 2022. "Network centrality effects in peer to peer lending," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Chong, Zhaohui & Wei, Xiaolin, 2023. "Exploring the spatial linkage network of peer-to-peer lending in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Tang, Xinyin & Feng, Chong & Zhu, Jianping & He, Minna, 2022. "How Can We Learn from Borrowers’ Online Behaviors? The Signal Effect of Borrowers’ Platform Involvement on Their Credit Risk," SocArXiv qga8j, Center for Open Science.
- Jiang, Cuiqing & Yin, Chang & Tang, Qian & Wang, Zhao, 2023. "The value of official website information in the credit risk evaluation of SMEs," Journal of Business Research, Elsevier, vol. 169(C).
- Nigmonov, Asror & Shams, Syed & Alam, Khorshed, 2024. "Liquidity risk in FinTech lending: Early impact of the COVID-19 pandemic on the P2P lending market," Emerging Markets Review, Elsevier, vol. 58(C).
- Lisa Crosato & Caterina Liberati & Marco Repetto, 2021. "Look Who's Talking: Interpretable Machine Learning for Assessing Italian SMEs Credit Default," Papers 2108.13914, arXiv.org, revised Sep 2021.
- Leite, Rodrigo & Mendes, Layla & Camelo, Emmanuel, 2024. "Innovating microcredit: how fintechs change the field," Journal of Economics and Business, Elsevier, vol. 128(C).
- Ahelegbey, Daniel Felix & Giudici, Paolo & Hadji-Misheva, Branka, 2019. "Factorial Network Models To Improve P2P Credit Risk Management," MPRA Paper 92633, University Library of Munich, Germany.
- Ahelegbey, Daniel & Giudici, Paolo & Pediroda, Valentino, 2023. "A network based fintech inclusion platform," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
- Liu, Yiting & Baals, Lennart John & Osterrieder, Jörg & Hadji-Misheva, Branka, 2024. "Network centrality and credit risk: A comprehensive analysis of peer-to-peer lending dynamics," Finance Research Letters, Elsevier, vol. 63(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahelegbey, Daniel Felix & Giudici, Paolo & Hadji-Misheva, Branka, 2019. "Factorial Network Models To Improve P2P Credit Risk Management," MPRA Paper 92633, University Library of Munich, Germany.
- Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
- Giudici, Paolo, 2018. "Financial data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 160-164.
- Agosto, Arianna & Ahelegbey, Daniel Felix & Giudici, Paolo, 2020.
"Tree networks to assess financial contagion,"
Economic Modelling, Elsevier, vol. 85(C), pages 349-366.
- Ahelegbey, Daniel Felix & Giudici, Paolo, 2019. "Tree Networks to Assess Financial Contagion," MPRA Paper 92632, University Library of Munich, Germany.
- Agosto, Arianna & Ahelegbey, Daniel Felix & Giudici, Paolo, 2020. "Tree Networks to assess Financial Contagion," MPRA Paper 107066, University Library of Munich, Germany.
- Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
- Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021.
"Network VAR models to measure financial contagion,"
The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
- Daniel Felix Ahelegbey & Paolo Giudici & Shatha Qamhieh Hashem, 2020. "Network VAR models to Measure Financial Contagion," DEM Working Papers Series 178, University of Pavia, Department of Economics and Management.
- Li, Bingqing & Zhang, Xiaoyuan, 2024. "Systemic risk and financial networks," The Quarterly Review of Economics and Finance, Elsevier, vol. 94(C), pages 25-36.
- Andrieş, Alin Marius & Ongena, Steven & Sprincean, Nicu & Tunaru, Radu, 2022.
"Risk spillovers and interconnectedness between systemically important institutions,"
Journal of Financial Stability, Elsevier, vol. 58(C).
- Alin Marius Andries & Steven Ongena & Nicu Sprincean & Radu Tunaru, 2020. "Risk Spillovers and Interconnectedness between Systemically Important Institutions," Swiss Finance Institute Research Paper Series 20-40, Swiss Finance Institute.
- Feng, Yusen & Wang, Gang-Jin & Zhu, You & Xie, Chi, 2023. "Systemic risk spillovers and the determinants in the stock markets of the Belt and Road countries," Emerging Markets Review, Elsevier, vol. 55(C).
- Zhang, Xiaoyuan & Zhang, Tianqi, 2022. "Dynamic credit contagion and aggregate loss in networks," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Daniel Felix Ahelegbey & Paolo Giudici, 2020. "Market Risk, Connectedness and Turbulence: A Comparison of 21st Century Financial Crises," DEM Working Papers Series 188, University of Pavia, Department of Economics and Management.
- Paolo Giudici & Laura Parisi, 2018. "CoRisk: Credit Risk Contagion with Correlation Network Models," Risks, MDPI, vol. 6(3), pages 1-19, September.
- Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
- Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021.
"Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions,"
International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
- Gang-Jin Wang & Yang-Yang Chen & Hui-Bin Si & Chi Xie & Julien Chevallier, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," Post-Print halshs-04250264, HAL.
- Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
- Paolo Giudici & Laura Parisi, 2019. "Bail-In or Bail-Out? Correlation Networks to Measure the Systemic Implications of Bank Resolution," Risks, MDPI, vol. 7(1), pages 1-25, January.
- Paolo Giudici & Laura Parisi, 2016. "CoRisk: measuring systemic risk through default probability contagion," DEM Working Papers Series 116, University of Pavia, Department of Economics and Management.
- Chowdhury, Biplob & Dungey, Mardi & Kangogo, Moses & Sayeed, Mohammad Abu & Volkov, Vladimir, 2019.
"The changing network of financial market linkages: The Asian experience,"
International Review of Financial Analysis, Elsevier, vol. 64(C), pages 71-92.
- Biplob Chowdhury & Mardi Dungey & Moses Kangogo & Mohammad Abu Sayeed & Vladimir Volkov, 2018. "The Changing Network of Financial Market Linkages: The Asian Experience," Working Papers id:12924, eSocialSciences.
- Dungey, Mardi & Chowdhury, Biplob & Kangogo, Moses & Sayeed, Mohammad Abu & Volkov, Vladimir, 2018. "The Changing Network of Financial Market Linkages: The Asian Experience," ADB Economics Working Paper Series 558, Asian Development Bank.
- Chowdhury, Biplob & Dungey, Mardi & Kangogo, Moses & Sayeed, Mohammad Abu & Volkov, Vladimir, 2018. "The changing network of financial market linkages: the Asian experience," Working Papers 2018-05, University of Tasmania, Tasmanian School of Business and Economics.
- Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
- Giudici, Paolo & Abu-Hashish, Iman, 2019. "What determines bitcoin exchange prices? A network VAR approach," Finance Research Letters, Elsevier, vol. 28(C), pages 309-318.
More about this item
Keywords
Credit Risk; Factor Models; Financial Technology; Peer-to-Peer; Scoring Models; Spatial Clustering;All these keywords.
JEL classification:
- C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
NEP fields
This paper has been announced in the following NEP Reports:- NEP-PAY-2019-03-25 (Payment Systems and Financial Technology)
- NEP-URE-2019-03-25 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:92636. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.