IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/64335.html
   My bibliography  Save this paper

Does Energy Intensity Contribute to CO2 Emissions? A Trivariate Analysis in Selected African Countries

Author

Listed:
  • Shahbaz, muhammad
  • Solarin, Sakiru Adebola
  • Sbia, Rashid
  • Bibi, Sadia

Abstract

The present study investigates the dynamic relationship between energy intensity and CO2 emissions by incorporating economic growth in environment function using data of Sub Saharan African countries. For this purpose, we applied panel cointegration to examine the long run relationship between the series. We employ the VECM Granger causality to test the direction of causality between the variables. At panel level, our result validates the existence of cointegration among the series. The long run panel results show that energy intensity has positive and statistically significant impact on CO2 emissions. There is also positive and negative link of non-linear and linear terms of real GDP per capita with CO2 emissions supporting the presence of environmental Kuznets curve (EKC). The causality analysis reveals the bidirectional causality between economic growth and CO2 emissions while energy intensity Granger causes economic growth and hence CO2 emissions, while across the individual countries, the results differ. This paper opens up new insights for policy makers to design comprehensive economic, energy and environmental policy for sustainable long run economic growth.

Suggested Citation

  • Shahbaz, muhammad & Solarin, Sakiru Adebola & Sbia, Rashid & Bibi, Sadia, 2015. "Does Energy Intensity Contribute to CO2 Emissions? A Trivariate Analysis in Selected African Countries," MPRA Paper 64335, University Library of Munich, Germany, revised 19 Mar 2015.
  • Handle: RePEc:pra:mprapa:64335
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/64335/1/MPRA_paper_64335.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Granger, C. W. J., 1988. "Causality, cointegration, and control," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 551-559.
    2. Karanfil, Fatih, 2008. "Energy consumption and economic growth revisited: Does the size of unrecorded economy matter?," Energy Policy, Elsevier, vol. 36(8), pages 3019-3025, August.
    3. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    4. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    5. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    6. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    7. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    8. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    9. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    10. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    11. Karlsson, Sune & Lothgren, Mickael, 2000. "On the power and interpretation of panel unit root tests," Economics Letters, Elsevier, vol. 66(3), pages 249-255, March.
    12. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    13. Muhammad Shahbaz & Nuno Carlos Leitão, 2013. "Portuguese Carbon Dioxide Emissions and Economic Growth: A Time Series Analysis," Bulletin of Energy Economics (BEE), The Economics and Social Development Organization (TESDO), vol. 1(1), pages 1-7, March.
    14. Mumtaz, Rehma & Zaman, Khalid & Sajjad, Faiza & Lodhi, Muhammad Saeed & Irfan, Muhammad & Khan, Imran & Naseem, Imran, 2014. "Modeling the causal relationship between energy and growth factors: Journey towards sustainable development," Renewable Energy, Elsevier, vol. 63(C), pages 353-365.
    15. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    16. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    17. Lean, Hooi Hooi & Smyth, Russell, 2010. "CO2 emissions, electricity consumption and output in ASEAN," Applied Energy, Elsevier, vol. 87(6), pages 1858-1864, June.
    18. Jamie Sanderson & Sardar M. N. Islam, 2007. "Climate Change and Economic Development," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-59012-0, March.
    19. Azhar Khan, Muhammad & Zahir Khan, Muhammad & Zaman, Khalid & Naz, Lubna, 2014. "Global estimates of energy consumption and greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 336-344.
    20. Glasure, Yong U. & Lee, Aie-Rie, 1998. "Cointegration, error-correction, and the relationship between GDP and energy: The case of South Korea and Singapore," Resource and Energy Economics, Elsevier, vol. 20(1), pages 17-25, March.
    21. Glasure, Yong U., 2002. "Energy and national income in Korea: further evidence on the role of omitted variables," Energy Economics, Elsevier, vol. 24(4), pages 355-365, July.
    22. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    23. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    24. Cropper, Maureen & Griffiths, Charles, 1994. "The Interaction of Population Growth and Environmental Quality," American Economic Review, American Economic Association, vol. 84(2), pages 250-254, May.
    25. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2010. "CO2 emissions, energy consumption and economic growth in BRIC countries," Energy Policy, Elsevier, vol. 38(12), pages 7850-7860, December.
    26. Apergis, Nicholas & Payne, James E., 2009. "CO2 emissions, energy usage, and output in Central America," Energy Policy, Elsevier, vol. 37(8), pages 3282-3286, August.
    27. Kumar Narayan, Paresh & Singh, Baljeet, 2007. "The electricity consumption and GDP nexus for the Fiji Islands," Energy Economics, Elsevier, vol. 29(6), pages 1141-1150, November.
    28. Kuan-Min Wang, 2013. "The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1337-1366, April.
    29. Hettige, Hemamala & Lucas, Robert E B & Wheeler, David, 1992. "The Toxic Intensity of Industrial Production: Global Patterns, Trends, and Trade Policy," American Economic Review, American Economic Association, vol. 82(2), pages 478-481, May.
    30. Shahbaz, Muhammad & Mutascu, Mihai & Azim, Parvez, 2013. "Environmental Kuznets curve in Romania and the role of energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 165-173.
    31. Rolf Larsson & Johan Lyhagen & Mickael Lothgren, 2001. "Likelihood-based cointegration tests in heterogeneous panels," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-41.
    32. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    33. Benjamin S. Cheng, 1999. "Causality Between Energy Consumption and Economic Growth in India: An Application of Cointegration and Error-Correction Modeling," Indian Economic Review, Department of Economics, Delhi School of Economics, vol. 34(1), pages 39-49, January.
    34. Masih, Abul M. M. & Masih, Rumi, 1996. "Energy consumption, real income and temporal causality: results from a multi-country study based on cointegration and error-correction modelling techniques," Energy Economics, Elsevier, vol. 18(3), pages 165-183, July.
    35. Shahbaz, Muhammad & Ozturk, Ilhan & Afza, Talat & Ali, Amjad, 2013. "Revisiting the environmental Kuznets curve in a global economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 494-502.
    36. Nasir, Muhammad & Ur Rehman, Faiz, 2011. "Environmental Kuznets Curve for carbon emissions in Pakistan: An empirical investigation," Energy Policy, Elsevier, vol. 39(3), pages 1857-1864, March.
    37. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Mahmood, Haider & Arouri, Mohamed, 2013. "Does financial development reduce CO2 emissions in Malaysian economy? A time series analysis," Economic Modelling, Elsevier, vol. 35(C), pages 145-152.
    38. Shahbaz, Muhammad & Lean, Hooi Hooi & Shabbir, Muhammad Shahbaz, 2012. "Environmental Kuznets Curve hypothesis in Pakistan: Cointegration and Granger causality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2947-2953.
    39. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    40. Oh, Wankeun & Lee, Kihoon, 2004. "Energy consumption and economic growth in Korea: testing the causality relation," Journal of Policy Modeling, Elsevier, vol. 26(8-9), pages 973-981, December.
    41. World Bank, 2013. "World Development Indicators 2013," World Bank Publications - Books, The World Bank Group, number 13191.
    42. Martinez-Zarzoso, Inmaculada & Bengochea-Morancho, Aurelia, 2004. "Pooled mean group estimation of an environmental Kuznets curve for CO2," Economics Letters, Elsevier, vol. 82(1), pages 121-126, January.
    43. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbaz, Muhammad & Hye, Qazi Muhammad Adnan & Tiwari, Aviral Kumar & Leitão, Nuno Carlos, 2013. "Economic growth, energy consumption, financial development, international trade and CO2 emissions in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 109-121.
    2. Muhammad, Shahbaz, 2012. "Multivariate granger causality between CO2 Emissions, energy intensity, financial development and economic growth: evidence from Portugal," MPRA Paper 37774, University Library of Munich, Germany, revised 31 Mar 2012.
    3. repec:ipg:wpaper:2014-529 is not listed on IDEAS
    4. Rahman, Mohammad Mafizur, 2017. "Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 506-514.
    5. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    6. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid & Chaibi, Anissa, 2014. "What does MENA region initially need: Grow output or mitigate CO2 emissions?," Economic Modelling, Elsevier, vol. 38(C), pages 270-281.
    7. Farhani, Sahbi & Shahbaz, Muhammad & Sbia, Rashid, 2013. "What is MENA Region Initially Needed: Grow Output or Mitigate CO2 Emissions?," MPRA Paper 48859, University Library of Munich, Germany, revised 05 Aug 2013.
    8. Shahbaz, Muhammad & Salah Uddin, Gazi & Ur Rehman, Ijaz & Imran, Kashif, 2014. "Industrialization, electricity consumption and CO2 emissions in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 575-586.
    9. Habib Ur Rahman & Umer Zaman & Jarosław Górecki, 2021. "The Role of Energy Consumption, Economic Growth and Globalization in Environmental Degradation: Empirical Evidence from the BRICS Region," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    10. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    11. Salahuddin, Mohammad & Gow, Jeff, 2014. "Economic growth, energy consumption and CO2 emissions in Gulf Cooperation Council countries," Energy, Elsevier, vol. 73(C), pages 44-58.
    12. Sharif Hossain, Md., 2011. "Panel estimation for CO2 emissions, energy consumption, economic growth, trade openness and urbanization of newly industrialized countries," Energy Policy, Elsevier, vol. 39(11), pages 6991-6999.
    13. Moutinho, Victor & Robaina, Margarita, 2016. "Is the share of renewable energy sources determining the CO2 kWh and income relation in electricity generation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 902-914.
    14. Phrakhruopatnontakitti & Busakorn Watthanabut & Kittisak Jermsittiparsert, 2020. "Energy Consumption, Economic Growth and Environmental Degradation in 4 Asian Countries: Malaysia, Myanmar, Vietnam and Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 529-539.
    15. Chen, Ping-Yu & Chen, Sheng-Tung & Hsu, Chia-Sheng & Chen, Chi-Chung, 2016. "Modeling the global relationships among economic growth, energy consumption and CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 420-431.
    16. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    17. Ertugrul, Hasan Murat & Çetin, Murat & Şeker, Fahri & Dogan, Eyüp, 2015. "The impact of trade openness on global carbon dioxide emissions: Evidence from the top ten emitters among developing countries," MPRA Paper 97539, University Library of Munich, Germany, revised 10 Mar 2016.
    18. Al-Mulali, Usama & Ozturk, Ilhan, 2016. "The investigation of environmental Kuznets curve hypothesis in the advanced economies: The role of energy prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1622-1631.
    19. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    20. Al Mamun, Md. & Sohag, Kazi & Hannan Mia, Md. Abdul & Salah Uddin, Gazi & Ozturk, Ilhan, 2014. "Regional differences in the dynamic linkage between CO2 emissions, sectoral output and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1-11.
    21. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.

    More about this item

    Keywords

    Economic Growth; Energy Intensity; CO2 Emissions; Africa;
    All these keywords.

    JEL classification:

    • A1 - General Economics and Teaching - - General Economics
    • A10 - General Economics and Teaching - - General Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:64335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.