IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/142.html
   My bibliography  Save this paper

Random Marginal and Random Removal values

Author

Listed:
  • Calvo, Emilio

Abstract

We propose two variations of the non-cooperative bargaining model for games in coalitional form, introduced by Hart and Mas-Colell (1996a). These strategic games implement, in the limit, two new NTU-values: The random marginal and the random removal values. The main characteristic of these proposals is that they always select a unique payoff allocation in NTU-games. The random marginal value coincides with the Consistent NTU-value (Maschler and Owen, 1989) for hyperplane games, and with the Shapley value for TU games (Shapley, 1953). The random removal coincides with the solidarity value (Novak and Radzik, 1994) in TU-games. In large games it is showed that, in the special class of market games, the random marginal coincides with the Shapley NTU-value (Shapley,1969), and that the random removal coincides with the equal split solution.

Suggested Citation

  • Calvo, Emilio, 2006. "Random Marginal and Random Removal values," MPRA Paper 142, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:142
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/142/1/MPRA_paper_142.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    2. Hart, Oliver & Moore, John, 1990. "Property Rights and the Nature of the Firm," Journal of Political Economy, University of Chicago Press, vol. 98(6), pages 1119-1158, December.
    3. Thomson,William & Lensberg,Terje, 2006. "Axiomatic Theory of Bargaining with a Variable Number of Agents," Cambridge Books, Cambridge University Press, number 9780521027038, September.
    4. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Harsanyi Values of Large Economies: Nonequivalence to Competitive Equilibria," Games and Economic Behavior, Elsevier, vol. 13(1), pages 74-99, March.
    5. Aumann, Robert J, 1975. "Values of Markets with a Continuum of Traders," Econometrica, Econometric Society, vol. 43(4), pages 611-646, July.
    6. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    7. Anbarci, Nejat & Bigelow, John P., 1994. "The area monotonic solution to the cooperative bargaining problem," Mathematical Social Sciences, Elsevier, vol. 28(2), pages 133-142, October.
    8. Emilio Calvo & Iñaki Garci´a & José M. Zarzuelo, 2001. "Replication invariance on NTU games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(4), pages 473-486.
    9. Hart, Sergiu, 2002. "Values of perfectly competitive economies," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 57, pages 2169-2184, Elsevier.
    10. Maschler, M & Owen, G, 1989. "The Consistent Shapley Value for Hyperplane Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(4), pages 389-407.
    11. Hart, Sergiu & Mas-Colell, Andreu, 1996. "Bargaining and Value," Econometrica, Econometric Society, vol. 64(2), pages 357-380, March.
    12. Calvo, Emilio & Santos, Juan Carlos, 1997. "Potentials in cooperative TU-games," Mathematical Social Sciences, Elsevier, vol. 34(2), pages 175-190, October.
    13. Shapley, Lloyd S & Shubik, Martin, 1969. "Pure Competition, Coalitional Power, and Fair Division," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(3), pages 337-362, October.
    14. Kalai, Ehud & Smorodinsky, Meir, 1975. "Other Solutions to Nash's Bargaining Problem," Econometrica, Econometric Society, vol. 43(3), pages 513-518, May.
    15. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    16. Ehud Kalai & Dov Samet, 1983. "On Weighted Shapley Values," Discussion Papers 602, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radzik, Tadeusz & Driessen, Theo, 2013. "On a family of values for TU-games generalizing the Shapley value," Mathematical Social Sciences, Elsevier, vol. 65(2), pages 105-111.
    2. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
    3. Bourheneddine Ben Dhaou & Abderrahmane Ziad, 2015. "The Free Solidarity Value," Economics Working Paper Archive (University of Rennes & University of Caen) 201508, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    4. Marco Rogna, 2022. "The Burning Coalition Bargaining Model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 735-768, October.
    5. Calvo, Emilio & Gutiérrez-López, Esther, 2014. "Axiomatic characterizations of the weighted solidarity values," Mathematical Social Sciences, Elsevier, vol. 71(C), pages 6-11.
    6. Emilio Calvo & Esther Gutiérrez-López, 2018. "Discounted Solidarity Values," Discussion Papers in Economic Behaviour 0418, University of Valencia, ERI-CES.
    7. Kawamori, Tomohiko & Miyakawa, Toshiji, 2019. "Bargaining delay under partial breakdowns and externalities," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    8. Karl Ortmann, 2013. "A cooperative value in a multiplicative model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 561-583, September.
    9. Tadeusz Radzik & Theo Driessen, 2016. "Modeling values for TU-games using generalized versions of consistency, standardness and the null player property," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 179-205, April.
    10. Radzik, Tadeusz, 2013. "Is the solidarity value close to the equal split value?," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 195-202.
    11. Emilio Calvo & Esther Gutiérrez-López, 2017. "Asymmetric players in the Solidarity and Shapley values," Discussion Papers in Economic Behaviour 0217, University of Valencia, ERI-CES.
    12. Kawamori, Tomohiko & Miyakawa, Toshiji, 2016. "Nash bargaining solution under externalities," Mathematical Social Sciences, Elsevier, vol. 84(C), pages 1-7.
    13. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
    14. Gutiérrez-López, Esther, 2020. "Axiomatic characterizations of the egalitarian solidarity values," Mathematical Social Sciences, Elsevier, vol. 108(C), pages 109-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emililo Calvo, 2004. "Single NTU-value solutions," Game Theory and Information 0405004, University Library of Munich, Germany, revised 10 Jun 2004.
    2. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    3. Chessa, Michela & Hanaki, Nobuyuki & Lardon, Aymeric & Yamada, Takashi, 2023. "An experiment on the Nash program: A comparison of two strategic mechanisms implementing the Shapley value," Games and Economic Behavior, Elsevier, vol. 141(C), pages 88-104.
    4. Emilio Calvo & Esther Gutiérrez, 2012. "Weighted Solidarity Values," Discussion Papers in Economic Behaviour 0212, University of Valencia, ERI-CES.
    5. Calvo, Emilio & Gutiérrez-López, Esther, 2021. "Recursive and bargaining values," Mathematical Social Sciences, Elsevier, vol. 113(C), pages 97-106.
    6. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2021. "An Experiment on the Nash Program: Comparing two Mechanisms Implementing the Shapley Value," GREDEG Working Papers 2021-07, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France.
    7. Gomes, Armando & Hart, Sergiu & Mas-Colell, Andreu, 1999. "Finite Horizon Bargaining and the Consistent Field," Games and Economic Behavior, Elsevier, vol. 27(2), pages 204-228, May.
    8. Laruelle, Annick & Valenciano, Federico, 2007. "Bargaining in committees as an extension of Nash's bargaining theory," Journal of Economic Theory, Elsevier, vol. 132(1), pages 291-305, January.
    9. Marco Rogna, 2022. "The Burning Coalition Bargaining Model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 59(3), pages 735-768, October.
    10. Sergiu Hart & Andreu Mas-Colell, 2008. "Bargaining and Cooperation in Strategic Form Form Games," Levine's Working Paper Archive 122247000000002205, David K. Levine.
    11. Vidal-Puga, Juan J., 2008. "Forming coalitions and the Shapley NTU value," European Journal of Operational Research, Elsevier, vol. 190(3), pages 659-671, November.
    12. Laruelle, Annick & Valenciano, Federico, 2008. "Noncooperative foundations of bargaining power in committees and the Shapley-Shubik index," Games and Economic Behavior, Elsevier, vol. 63(1), pages 341-353, May.
    13. Takeuchi, Ai & Veszteg, Róbert F. & Kamijo, Yoshio & Funaki, Yukihiko, 2022. "Bargaining over a jointly produced pie: The effect of the production function on bargaining outcomes," Games and Economic Behavior, Elsevier, vol. 134(C), pages 169-198.
    14. Yakov Babichenko & Leonard J. Schulman, 2015. "Pareto Efficient Nash Implementation Via Approval Voting," Papers 1502.05238, arXiv.org, revised Mar 2017.
    15. Emilio Calvo & Esther Gutiérrez-López, 2016. "A strategic approach for the discounted Shapley values," Theory and Decision, Springer, vol. 80(2), pages 271-293, February.
    16. Michela Chessa & Nobuyuki Hanaki & Aymeric Lardon & Takashi Yamada, 2023. "An Experiment on Demand Commitment Bargaining," Dynamic Games and Applications, Springer, vol. 13(2), pages 589-609, June.
    17. Akira Okada, 2015. "Cooperation and Institution in Games," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 1-32, March.
    18. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    19. Rebelo, S., 1997. "On the Determinant of Economic Growth," RCER Working Papers 443, University of Rochester - Center for Economic Research (RCER).
    20. Sergiu Hart & Andreu Mas-Colell, 2008. "Cooperative Games in Strategic Form," Discussion Paper Series dp484, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.

    More about this item

    Keywords

    Shapley value; NTU-games; large market games;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.