IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/12260.html
   My bibliography  Save this paper

Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis

Author

Listed:
  • Rossi, Eduardo
  • Spazzini, Filippo

Abstract

Multivariate GARCH models are in principle able to accommodate the features of the dynamic conditional correlations processes, although with the drawback, when the number of financial returns series considered increases, that the parameterizations entail too many parameters.In general, the interaction between model parametrization of the second conditional moment and the conditional density of asset returns adopted in the estimation determines the fitting of such models to the observed dynamics of the data. This paper aims to evaluate the interactions between conditional second moment specifications and probability distributions adopted in the likelihood computation, in forecasting volatilities and covolatilities. We measure the relative performances of alternative conditional second moment and probability distributions specifications by means of Monte Carlo simulations, using both statistical and financial forecasting loss functions.

Suggested Citation

  • Rossi, Eduardo & Spazzini, Filippo, 2008. "Model and distribution uncertainty in multivariate GARCH estimation: a Monte Carlo analysis," MPRA Paper 12260, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:12260
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/12260/1/MPRA_paper_12260.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    2. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    3. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    4. Harvey, Andrew & Ruiz, Esther & Sentana, Enrique, 1992. "Unobserved component time series models with Arch disturbances," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157.
    5. Neil Shephard & Torben Andersen, 2008. "Stochastic Volatility: Origins and Overview," Economics Papers 2008-W04, Economics Group, Nuffield College, University of Oxford.
    6. Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
    7. Mihaela ŞErban & Anthony Brockwell & John Lehoczky & Sanjay Srivastava, 2007. "Modelling the Dynamic Dependence Structure in Multivariate Financial Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 763-782, September.
    8. Brailsford, Timothy J. & Faff, Robert W., 1996. "An evaluation of volatility forecasting techniques," Journal of Banking & Finance, Elsevier, vol. 20(3), pages 419-438, April.
    9. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    10. Bauwens, L. & Hafner, C.M. & Rombouts, J.V.K., 2007. "Multivariate mixed normal conditional heteroskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3551-3566, April.
    11. Bauwens, Luc & Laurent, Sebastien, 2005. "A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 346-354, July.
    12. Kevin Sheppard & Andrew J. Patton, 2008. "Evaluating Volatility and Correlation Forecasts," Economics Series Working Papers 2008fe22, University of Oxford, Department of Economics.
    13. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    2. Guney, Yesim & Arslan, Olcay & Yavuz, Fulya Gokalp, 2022. "Robust estimation in multivariate heteroscedastic regression models with autoregressive covariance structures using EM algorithm," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    3. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    4. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    5. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    6. Vellachami, Sanggetha & Hasanov, Akram Shavkatovich & Brooks, Robert, 2023. "Risk transmission from the energy markets to the carbon market: Evidence from the recursive window approach," International Review of Financial Analysis, Elsevier, vol. 89(C).
    7. Hendrych, R. & Cipra, T., 2016. "On conditional covariance modelling: An approach using state space models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 304-317.
    8. Audrino, Francesco, 2014. "Forecasting correlations during the late-2000s financial crisis: The short-run component, the long-run component, and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 43-60.
    9. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    4. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. M. Hashem Pesaran & Bahram Pesaran, 2007. "Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," CESifo Working Paper Series 2056, CESifo.
    6. Pesaran, B. & Pesaran, M.H., 2007. "Modelling Volatilities and Conditional Correlations in Futures Markets with a Multivariate t Distribution," Cambridge Working Papers in Economics 0734, Faculty of Economics, University of Cambridge.
    7. Carnero M. Angeles & Eratalay M. Hakan, 2014. "Estimating VAR-MGARCH models in multiple steps," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 339-365, May.
    8. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. Alp, Tansel & Demetrescu, Matei, 2010. "Joint forecasts of Dow Jones stocks under general multivariate loss function," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2360-2371, November.
    13. Asai Manabu & So Mike K.P., 2015. "Long Memory and Asymmetry for Matrix-Exponential Dynamic Correlation Processes," Journal of Time Series Econometrics, De Gruyter, vol. 7(1), pages 69-94, January.
    14. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    15. Li Wei & Ming-Chih Lee & Wan-Hsiu Cheng & Chia-Hsien Tang & Jing-Wun You, 2023. "Evaluating the Efficiency of Financial Assets as Hedges against Bitcoin Risk during the COVID-19 Pandemic," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
    16. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    17. Bauwens, Luc & Grigoryeva, Lyudmila & Ortega, Juan-Pablo, 2016. "Estimation and empirical performance of non-scalar dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 17-36.
    18. Christian M. Hafner & Helmut Herwartz, 2009. "Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 294-323, August.
    19. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    20. Trino-Manuel Ñíguez, 2008. "Volatility and VaR forecasting in the Madrid Stock Exchange," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 169-196, September.

    More about this item

    Keywords

    Multivariate GARCH models; Model uncertainty; Quasi-maximum likelihood; Monte Carlo methods;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.