IDEAS home Printed from https://ideas.repec.org/p/pav/wpaper/105.html
   My bibliography  Save this paper

A Copula-VAR-X Approach for Industrial Production Modelling and Forecasting

Author

Listed:
  • Carluccio Bianchi

    (Department of Economics and Quantitative Methods, University of Pavia)

  • Alessandro Carta

    (Department of Economics and Quantitative Methods, University of Pavia)

  • Dean Fantazzini

    (Department of Economics and Quantitative Methods, University of Pavia)

  • Maria Elena De Giuli

    (Department of Economics and Quantitative Methods, University of Pavia)

  • Mario A. Maggi

    (Department of Economics and Quantitative Methods, University of Pavia)

Abstract

World economies, and especially European ones, have become strongly interconnected in the last decades and a joint modelling is required. We propose here the use of Copulas to build flexible multivariate distributions, since they allow for a rich dependence structure and more flexible marginal distributions that better fit the features of empirical data, such as leptokurtosis. We use our approach to forecast industrial production series in the core EMU countries and we provide evidence that the copula-VAR model outperforms or at worst compares similarly to normal VAR models, keeping the same computational tractability of the latter approach.

Suggested Citation

  • Carluccio Bianchi & Alessandro Carta & Dean Fantazzini & Maria Elena De Giuli & Mario A. Maggi, 2009. "A Copula-VAR-X Approach for Industrial Production Modelling and Forecasting," Quaderni di Dipartimento 105, University of Pavia, Department of Economics and Quantitative Methods.
  • Handle: RePEc:pav:wpaper:105
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/wpaper/q105.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    3. Domenico J. Marchetti & Giuseppe Parigi, 1998. "Energy Consumption, Survey Data and the Prediction of Industrial Production in Italy," Temi di discussione (Economic working papers) 342, Bank of Italy, Economic Research and International Relations Area.
    4. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    5. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    6. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    7. Chen, Xiaohong & Fan, Yanqin & Patton, Andrew J., 2004. "Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates," LSE Research Online Documents on Economics 24681, London School of Economics and Political Science, LSE Library.
    8. Bradley, Michael D. & Jansen, Dennis W., 2004. "Forecasting with a nonlinear dynamic model of stock returns and industrial production," International Journal of Forecasting, Elsevier, vol. 20(2), pages 321-342.
    9. Joshua V. Rosenberg, 2003. "Nonparametric pricing of multivariate contingent claims," Staff Reports 162, Federal Reserve Bank of New York.
    10. Granger, Clive W.J. & Terasvirta, Timo & Patton, Andrew J., 2006. "Common factors in conditional distributions for bivariate time series," Journal of Econometrics, Elsevier, vol. 132(1), pages 43-57, May.
    11. James H. Stock & Mark W. Watson, 1998. "A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series," NBER Working Papers 6607, National Bureau of Economic Research, Inc.
    12. Giuseppe Parigi & Roberto Golinelli & Giorgio Bodo, 2000. "Forecasting industrial production in the Euro area," Empirical Economics, Springer, vol. 25(4), pages 541-561.
    13. Favero, Carlo A. & Söderström, Ulf & Kaminska, Iryna, 2005. "The Predictive Power of the Yield Spread: Further Evidence and A Structural Interpretation," CEPR Discussion Papers 4910, C.E.P.R. Discussion Papers.
    14. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Rodríguez, Jorge V. & Ledesma-Rodríguez, Francisco & Santana-Gallego, María, 2015. "Testing dependence between GDP and tourism's growth rates," Tourism Management, Elsevier, vol. 48(C), pages 268-282.
    2. Liu, Xiaoliang & Xu, Wei & Odening, Martin, 2011. "Can crop yield risk be globally diversified?," SFB 649 Discussion Papers 2011-018, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Rivieccio, Giorgia & De Luca, Giovanni, 2016. "Copula function approaches for the analysis of serial and cross dependence in stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 55-61.
    4. Luca, Giovanni De & Guégan, Dominique & Rivieccio, Giorgia, 2019. "Assessing tail risk for nonlinear dependence of MSCI sector indices: A copula three-stage approach," Finance Research Letters, Elsevier, vol. 30(C), pages 327-333.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    2. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    3. van den Goorbergh, Rob W.J. & Genest, Christian & Werker, Bas J.M., 2005. "Bivariate option pricing using dynamic copula models," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 101-114, August.
    4. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    5. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    6. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    7. Leonidas Tsiaras, 2010. "Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns," CREATES Research Papers 2010-35, Department of Economics and Business Economics, Aarhus University.
    8. Rob van den Goorbergh, 2004. "A Copula-Based Autoregressive Conditional Dependence Model of International Stock Markets," DNB Working Papers 022, Netherlands Central Bank, Research Department.
    9. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CIRJE F-Series CIRJE-F-693, CIRJE, Faculty of Economics, University of Tokyo.
    10. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    11. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    12. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    15. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    16. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    17. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    18. Chen, Xiaohong & Fan, Yanqin, 2006. "Estimation of copula-based semiparametric time series models," Journal of Econometrics, Elsevier, vol. 130(2), pages 307-335, February.
    19. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
    20. Heitham Al-Hajieh & Hashem AlNemer & Timothy Rodgers & Jacek Niklewski, 2015. "Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 4(2), pages 9-26.

    More about this item

    Keywords

    Forecasting; Industrial Production; Copulas; VAR models.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:wpaper:105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Paolo Bonomolo (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.