IDEAS home Printed from https://ideas.repec.org/p/nsr/escoed/escoe-dp-2019-18.html
   My bibliography  Save this paper

Testing for the Presence of Measurement Error

Author

Listed:
  • Daniel Wilhelm

Abstract

This paper proposes a simple nonparametric test of the hypothesis of no measurement error in explanatory variables and of the hypothesis that measurement error, if there is any, does not distort a given object of interest. We show that, under weak assumptions, both of these hypotheses are equivalent to certain restrictions on the joint distribution of an observable outcome and two observable variables that are related to the latent explanatory variable. Existing nonparametric tests for conditional independence can be used to directly test these restrictions without having to solve for the distribution of unobservables. In consequence, the test controls size under weak conditions and possesses power against a large class of nonclassical measurement error models, including many that are not identified. If the test detects measurement error, a multiple hypothesis testing procedure allows the researcher to recover subpopulations that are free from measurement error. Finally, we use the proposed methodology to study the reliability of administrative earnings records in the U.S., finding evidence for the presence of measurement error originating from young individuals with high earnings growth (in absolute terms).

Suggested Citation

  • Daniel Wilhelm, 2019. "Testing for the Presence of Measurement Error," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-18, Economic Statistics Centre of Excellence (ESCoE).
  • Handle: RePEc:nsr:escoed:escoe-dp-2019-18
    as

    Download full text from publisher

    File URL: https://escoe-website.s3.amazonaws.com/wp-content/uploads/2020/07/14161856/ESCoE-DP-2019-18-v1.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    2. Shuaizhang Feng & Yingyao Hu, 2013. "Misclassification Errors and the Underestimation of the US Unemployment Rate," American Economic Review, American Economic Association, vol. 103(2), pages 1054-1070, April.
    3. Altonji, Joseph G, 1986. "Intertemporal Substitution in Labor Supply: Evidence from Micro Data," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 176-215, June.
    4. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    5. Abowd, John M & Card, David, 1987. "Intertemporal Labor Supply and Long-term Employment Contracts," American Economic Review, American Economic Association, vol. 77(1), pages 50-68, March.
    6. Soren Blomquist & Anil Kumar & Che-Yuan Liang & Whitney K. Newey, 2014. "Individual heterogeneity, nonlinear budget sets, and taxable income," CeMMAP working papers CWP21/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    8. Timothy Erickson & Toni M. Whited, 2000. "Measurement Error and the Relationship between Investment and q," Journal of Political Economy, University of Chicago Press, vol. 108(5), pages 1027-1057, October.
    9. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2015. "Estimating the Production Function for Human Capital: Results from a Randomized Control Trial in Colombia," Cowles Foundation Discussion Papers 1987, Cowles Foundation for Research in Economics, Yale University.
    10. Ashenfelter, Orley, 1984. "Macroeconomic analyses and microeconomic analyses of labor supply," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 21(1), pages 117-156, January.
    11. repec:fth:prinin:419 is not listed on IDEAS
    12. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    13. Huang, Meng & Sun, Yixiao & White, Halbert, 2016. "A Flexible Nonparametric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1434-1482, December.
    14. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    15. Maximilian Kasy, 2014. "Instrumental Variables with Unrestricted Heterogeneity and Continuous Treatment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(4), pages 1614-1636.
    16. Orazio Attanasio & Sarah Cattan & Emla Fitzsimons & Costas Meghir & Marta Rubio-Codina, 2020. "Estimating the Production Function for Human Capital: Results from a Randomized Controlled Trial in Colombia," American Economic Review, American Economic Association, vol. 110(1), pages 48-85, January.
    17. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    18. Susanne M. Schennach, 2016. "Recent Advances in the Measurement Error Literature," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 341-377, October.
    19. repec:bla:econom:v:44:y:1977:i:174:p:163-78 is not listed on IDEAS
    20. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    21. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    22. Sokbae Lee & Oliver Linton & Yoon-Jae Whang, 2009. "Testing for Stochastic Monotonicity," Econometrica, Econometric Society, vol. 77(2), pages 585-602, March.
    23. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    24. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    25. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    26. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    27. Thomas J. Kane & Cecilia Elena Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," NBER Working Papers 7235, National Bureau of Economic Research, Inc.
    28. Bernd Fitzenberger & Aderonke Osikominu & Robert Völter, 2006. "Imputation Rules to Improve the Education Variable in the IAB Employment Subsample," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 126(3), pages 405-436.
    29. Raj Chetty, 2012. "Bounds on Elasticities With Optimization Frictions: A Synthesis of Micro and Macro Evidence on Labor Supply," Econometrica, Econometric Society, vol. 80(3), pages 969-1018, May.
    30. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    31. Chetverikov, Denis & Wilhelm, Daniel & Kim, Dongwoo, 2021. "An Adaptive Test Of Stochastic Monotonicity," Econometric Theory, Cambridge University Press, vol. 37(3), pages 495-536, June.
    32. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    33. Orley Ashenfelter, 1984. "Macroeconomic Analyses and Microeconomic Analyses of Labor Supply," Working Papers 553, Princeton University, Department of Economics, Industrial Relations Section..
    34. An, Yonghong & Hu, Yingyao, 2012. "Well-posedness of measurement error models for self-reported data," Journal of Econometrics, Elsevier, vol. 168(2), pages 259-269.
    35. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2013. "On the Testability of Identification in Some Nonparametric Models With Endogeneity," Econometrica, Econometric Society, vol. 81(6), pages 2535-2559, November.
    36. Denis Chetverikov & Dongwoo Kim & Daniel Wilhelm, 2018. "Nonparametric instrumental-variable estimation," Stata Journal, StataCorp LP, vol. 18(4), pages 937-950, December.
    37. Susan Athey, 2002. "Monotone Comparative Statics under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(1), pages 187-223.
    38. Denis Chetverikov & Daniel Wilhelm, 2017. "Nonparametric Instrumental Variable Estimation Under Monotonicity," Econometrica, Econometric Society, vol. 85, pages 1303-1320, July.
    39. Orazio Attanasio & Costas Meghir & Emily Nix, 2015. "Human Capital Development and Parental Investment in India," Cowles Foundation Discussion Papers 2026R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2017.
    40. Hu, Yingyao & McAdams, David & Shum, Matthew, 2013. "Identification of first-price auctions with non-separable unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 174(2), pages 186-193.
    41. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    42. James Heckman & Rodrigo Pinto & Peter Savelyev, 2013. "Understanding the Mechanisms through Which an Influential Early Childhood Program Boosted Adult Outcomes," American Economic Review, American Economic Association, vol. 103(6), pages 2052-2086, October.
    43. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    44. Xiaoying Tian & Jonathan Taylor, 2017. "Asymptotics of Selective Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 480-499, June.
    45. Manuel Arellano & Richard Blundell & Stéphane Bonhomme, 2017. "Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework," Econometrica, Econometric Society, vol. 85, pages 693-734, May.
    46. Hausman, J. A. & Newey, W. K. & Powell, J. L., 1995. "Nonlinear errors in variables Estimation of some Engel curves," Journal of Econometrics, Elsevier, vol. 65(1), pages 205-233, January.
    47. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    48. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    49. Lewbel, Arthur, 2000. "Identification Of The Binary Choice Model With Misclassification," Econometric Theory, Cambridge University Press, vol. 16(4), pages 603-609, August.
    50. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    51. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    52. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(4), pages 925-932, August.
    53. Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008. "Formalized Data Snooping Based On Generalized Error Rates," Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
    54. Suyong Song & Susanne M. Schennach & Halbert White, 2015. "Estimating nonseparable models with mismeasured endogenous variables," Quantitative Economics, Econometric Society, vol. 6(3), pages 749-794, November.
    55. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    56. Kane, Thomas J & Rouse, Cecilia Elena, 1995. "Labor-Market Returns to Two- and Four-Year College," American Economic Review, American Economic Association, vol. 85(3), pages 600-614, June.
    57. Joel L. Horowitz & Marianthi Markatou, 1996. "Semiparametric Estimation of Regression Models for Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 63(1), pages 145-168.
    58. Soren Blomquist & Whitney Newey, 2002. "Nonparametric Estimation with Nonlinear Budget Sets," Econometrica, Econometric Society, vol. 70(6), pages 2455-2480, November.
    59. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    60. De Nadai, Michele & Lewbel, Arthur, 2016. "Nonparametric errors in variables models with measurement errors on both sides of the equation," Journal of Econometrics, Elsevier, vol. 191(1), pages 19-32.
    61. Aprajit Mahajan, 2006. "Identification and Estimation of Regression Models with Misclassification," Econometrica, Econometric Society, vol. 74(3), pages 631-665, May.
    62. Griliches, Zvi, 1986. "Economic data issues," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 25, pages 1465-1514, Elsevier.
    63. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    64. Thomas J. Kane & Cecilia Rouse & Douglas Staiger, 1999. "Estimating Returns to Schooling When Schooling is Misreported," Working Papers 798, Princeton University, Department of Economics, Industrial Relations Section..
    65. Gozalo, Pedro L., 1993. "A Consistent Model Specification Test for Nonparametric Estimation of Regression Function Models," Econometric Theory, Cambridge University Press, vol. 9(3), pages 451-477, June.
    66. Susanne M Schennach, 2007. "Instrumental Variable Estimation of Nonlinear Errors-in-Variables Models," Econometrica, Econometric Society, vol. 75(1), pages 201-239, January.
    67. Bound, John & Brown, Charles & Duncan, Greg J & Rodgers, Willard L, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    68. Chesher, Andrew & Dumangane, Montezuma & Smith, Richard J., 2002. "Duration response measurement error," Journal of Econometrics, Elsevier, vol. 111(2), pages 169-194, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekaterina Oparina & Sorawoot Srisuma, 2022. "Analyzing Subjective Well-Being Data with Misclassification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 730-743, April.
    2. Dongwoo Kim & Daniel Wilhelm, 2017. "Powerful t-Tests in the presence of nonclassical measurement error," CeMMAP working papers 57/17, Institute for Fiscal Studies.
    3. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    4. Chetverikov, Denis & Wilhelm, Daniel & Kim, Dongwoo, 2021. "An Adaptive Test Of Stochastic Monotonicity," Econometric Theory, Cambridge University Press, vol. 37(3), pages 495-536, June.
    5. Crossley, Thomas F. & Fisher, Paul & Hussein, Omar, 2023. "Assessing data from summary questions about earnings and income," Labour Economics, Elsevier, vol. 81(C).
    6. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    7. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    8. Maddalena Cavicchioli & Michele Lalla, 2022. "Evidences from survey data and fiscal data: nonresponse and measurement errors in annual incomes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 587-615, September.
    9. Wossen, Tesfamicheal & Abay, Kibrom A. & Abdoulaye, Tahirou, 2022. "Misperceiving and misreporting input quality: Implications for input use and productivity," Journal of Development Economics, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Jun Lee & Daniel Wilhelm, 2020. "Testing for the presence of measurement error in Stata," Stata Journal, StataCorp LP, vol. 20(2), pages 382-404, June.
    2. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    3. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    4. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    5. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    6. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers CWP34/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    8. Daniel Wilhelm, 2015. "Identification and estimation of nonparametric panel data regressions with measurement error," CeMMAP working papers 34/15, Institute for Fiscal Studies.
    9. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    10. Dongwoo Kim & Daniel Wilhelm, 2017. "Powerful t-Tests in the presence of nonclassical measurement error," CeMMAP working papers CWP57/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Yingyao Hu & Geert Ridder, 2012. "Estimation of nonlinear models with mismeasured regressors using marginal information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 347-385, April.
    12. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    14. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    15. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    16. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    17. Battistin, Erich & De Nadai, Michele & Sianesi, Barbara, 2014. "Misreported schooling, multiple measures and returns to educational qualifications," Journal of Econometrics, Elsevier, vol. 181(2), pages 136-150.
    18. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    19. Jeremy J. Nalewaik, 2014. "Missing Variation in the Great Moderation: Lack of Signal Error and OLS Regression," Finance and Economics Discussion Series 2014-27, Board of Governors of the Federal Reserve System (U.S.).
    20. Christian vom Lehn & Cache Ellsworth & Zachary Kroff, 2022. "Reconciling Occupational Mobility in the Current Population Survey," Journal of Labor Economics, University of Chicago Press, vol. 40(4), pages 1005-1051.

    More about this item

    Keywords

    measurement error; nonparametric test; frictions;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:escoed:escoe-dp-2019-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ESCoE Centre Manager (email available below). General contact details of provider: https://edirc.repec.org/data/escoeuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.