IDEAS home Printed from https://ideas.repec.org/p/not/notgts/07-05.html
   My bibliography  Save this paper

Regression-based seasonal unit root tests

Author

Listed:
  • Richard J. Smith
  • A. M. Robert Taylor
  • Tomas del Barrio Castro

Abstract

The contribution of this paper is three-fold. Firstly, a characterisation theorem of the sub-hypotheses comprising the seasonal unit root hypothesis is presented which provides a precise formulation of the alternative hypotheses against which regression-based seasonal unit root tests test. Secondly, it proposes regressionbased tests for the seasonal unit root hypothesis which allow a general seasonal aspect for the data and are similar both exactly and asymptotically with respect to initial values and seasonal drift parameters. Thirdly, limiting distribution theory is given for these statistics where, in contrast to previous papers in the literature, in doing so it is not assumed that unit roots hold at all of the zero and seasonal frequencies. This is shown to alter the large sample null distribution theory for regression t-statistics for unit roots at the complex frequencies, but interestingly to not affect the limiting null distributions of the regression t-statistics for unit roots at the zero and Nyquist frequencies and regression Fstatistics for unit roots at the complex frequencies. Our results therefore have important implications for how tests of the seasonal unit root hypothesis should be conducted in practice. Associated simulation evidence on the size and power properties of the statistics presented in this paper is given which is consonant with the predictions from the large sample theory.

Suggested Citation

  • Richard J. Smith & A. M. Robert Taylor & Tomas del Barrio Castro, 2007. "Regression-based seasonal unit root tests," Discussion Papers 07/05, University of Nottingham, Granger Centre for Time Series Econometrics.
  • Handle: RePEc:not:notgts:07/05
    as

    Download full text from publisher

    File URL: https://www.nottingham.ac.uk/research/groups/grangercentre/documents/07-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    2. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-379, July.
    3. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    4. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    5. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    6. A. M. Robert Taylor, 1998. "Testing for Unit Roots in Monthly Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 349-368, May.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    9. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    10. H. Peter Boswijk & Philip Hans Franses, 1996. "Unit Roots In Periodic Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(3), pages 221-245, May.
    11. Franses, Philip Hans, 1994. "A multivariate approach to modeling univariate seasonal time series," Journal of Econometrics, Elsevier, vol. 63(1), pages 133-151, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    2. del Barrio Castro, Tomás & Osborn, Denise R., 2023. "Periodic Integration and Seasonal Unit Roots," MPRA Paper 117935, University Library of Munich, Germany, revised 2023.
    3. Rotger, Gabriel Pons, "undated". "Testing for Seasonal Unit Roots with Temporally Aggregated Time Series," Economics Working Papers 2003-16, Department of Economics and Business Economics, Aarhus University.
    4. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    5. Eric Ghysels & Denise R. Osborn & Paulo M. M. Rodrigues, 1999. "Seasonal Nonstationarity and Near-Nonstationarity," CIRANO Working Papers 99s-05, CIRANO.
    6. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    7. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    8. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    9. Denise Osborn & Paulo Rodrigues, 2002. "Asymptotic Distributions Of Seasonal Unit Root Tests: A Unifying Approach," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 221-241.
    10. Zou, Nan & Politis, Dimitris N., 2021. "Bootstrap seasonal unit root test under periodic variation," Econometrics and Statistics, Elsevier, vol. 19(C), pages 1-21.
    11. Burridge, Peter & Taylor, A. M. Robert, 2001. "On regression-based tests for seasonal unit roots in the presence of periodic heteroscedasticity," Journal of Econometrics, Elsevier, vol. 104(1), pages 91-117, August.
    12. del Barrio Castro Tomás & Osborn Denise R, 2011. "Nonparametric Tests for Periodic Integration," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-35, February.
    13. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    14. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    15. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    16. Gabriel Pons Rotger, 2004. "Seasonal Unit Root Testing Based on the Temporal Aggregation of Seasonal Cycles," Economics Working Papers 2004-1, Department of Economics and Business Economics, Aarhus University.
    17. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    18. Stephen Leybourne & A. M. Robert Taylor, 2003. "Seasonal Unit Root Tests Based on Forward and Reverse Estimation," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 441-460, July.
    19. Luis C. Nunes & Paulo M. M. Rodrigues, 2011. "On LM‐type tests for seasonal unit roots in the presence of a break in trend," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(2), pages 108-134, March.
    20. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:not:notgts:07/05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsnotuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.