IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/9664.html
   My bibliography  Save this paper

A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations

Author

Listed:
  • Michael W. Brandt
  • Francis X. Diebold

Abstract

We extend range-based volatility estimation to the multivariate case. In particular, we propose a range-based covariance estimator motivated by a key financial economic consideration, the absence of arbitrage, in addition to statistical considerations. We show that this estimator is highly efficient yet robust to market microstructure noise arising from bid-ask bounce and asynchronous trading.

Suggested Citation

  • Michael W. Brandt & Francis X. Diebold, 2003. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," NBER Working Papers 9664, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:9664
    Note: AP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w9664.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    2. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
    3. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    6. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," NBER Technical Working Papers 0279, National Bureau of Economic Research, Inc.
    8. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    9. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    10. Ball, Clifford A & Torous, Walter N, 1984. "The Maximum Likelihood Estimation of Security Price Volatility: Theory, Evidence, and Application to Option Pricing," The Journal of Business, University of Chicago Press, vol. 57(1), pages 97-112, January.
    11. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    12. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    13. Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
    14. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    2. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.
    3. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Bertrand B. Maillet & Jean-Philippe R. M�decin, 2010. "Extreme Volatilities, Financial Crises and L-moment Estimations of Tail-indexes," Working Papers 2010_10, Department of Economics, University of Venice "Ca' Foscari".
    5. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    6. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    7. repec:wyi:journl:002128 is not listed on IDEAS
    8. Degiannakis, Stavros & Livada, Alexandra, 2013. "Realized volatility or price range: Evidence from a discrete simulation of the continuous time diffusion process," Economic Modelling, Elsevier, vol. 30(C), pages 212-216.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.
    11. Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    13. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    14. Li, Hongquan & Hong, Yongmiao, 2011. "Financial volatility forecasting with range-based autoregressive volatility model," Finance Research Letters, Elsevier, vol. 8(2), pages 69-76, June.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. Bali, Turan G. & Demirtas, K. Ozgur & Levy, Haim, 2008. "Nonlinear mean reversion in stock prices," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 767-782, May.
    17. Christensen, Kim & Podolskij, Mark, 2007. "Realized range-based estimation of integrated variance," Journal of Econometrics, Elsevier, vol. 141(2), pages 323-349, December.
    18. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    19. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    20. repec:grm:ecoyun:201716 is not listed on IDEAS
    21. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
    22. Jin-Huei Yeh & Jying-Nan Wang & Chung-Ming Kuan, 2014. "A noise-robust estimator of volatility based on interquantile ranges," Review of Quantitative Finance and Accounting, Springer, vol. 43(4), pages 751-779, November.

    More about this item

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:9664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.