IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/12505.html
   My bibliography  Save this paper

A New Framework for the Analysis of Inequality

Author

Listed:
  • Flavio Cunha
  • James J. Heckman

Abstract

This paper presents a new framework for analyzing inequality that moves beyond the anonymity postulate. We estimate the determinants of sectoral choice and the joint distributions of outcomes across sectors. We determine which components of realized earnings variability are due to uncertainty and which components are due to components of human diversity that are forcastable by agents. Using our tools, we can determine how policies shift persons across sectors and outcome distributions across sectors.

Suggested Citation

  • Flavio Cunha & James J. Heckman, 2006. "A New Framework for the Analysis of Inequality," NBER Working Papers 12505, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:12505
    Note: DAE IFM LS CH
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w12505.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    2. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College," NBER Working Papers 9546, National Bureau of Economic Research, Inc.
    3. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    4. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    5. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    6. Pedro Carneiro & James J. Heckman, 2002. "The Evidence on Credit Constraints in Post--secondary Schooling," Economic Journal, Royal Economic Society, vol. 112(482), pages 705-734, October.
    7. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "2001 Lawrence R. Klein Lecture Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 361-422, May.
    8. James J. Heckman, 1991. "Randomization and Social Policy Evaluation Revisited," NBER Technical Working Papers 0107, National Bureau of Economic Research, Inc.
    9. Card, David, 1999. "The causal effect of education on earnings," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 30, pages 1801-1863, Elsevier.
    10. Heckman, James J & Lochner, Lance & Taber, Christopher, 1998. "General-Equilibrium Treatment Effects: A Study of Tuition Policy," American Economic Review, American Economic Association, vol. 88(2), pages 381-386, May.
    11. Heckman, James J & Lochner, Lance & Taber, Christopher, 1998. "Tax Policy and Human-Capital Formation," American Economic Review, American Economic Association, vol. 88(2), pages 293-297, May.
    12. James Heckman & Lance Lochner & Christopher Taber, 1998. "Explaining Rising Wage Inequality: Explanations With A Dynamic General Equilibrium Model of Labor Earnings With Heterogeneous Agents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(1), pages 1-58, January.
    13. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    14. James J. Heckman & Lance Lochner & Christopher Taber, 1999. "General Equilibrium Cost Benefit Analysis of Education and Tax Policies," NBER Working Papers 6881, National Bureau of Economic Research, Inc.
    15. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    16. Aakvik, A. & Heckman, J.J. & Vytlacil, E.J., 1999. "Training Effects on Employment when the Training Effects are Heterogenous : an Application to Norwegian Vocational Rehabilitation Programs," Norway; Department of Economics, University of Bergen 0599, Department of Economics, University of Bergen.
    17. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    18. Browning, Martin & Hansen, Lars Peter & Heckman, James J., 1999. "Micro data and general equilibrium models," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 8, pages 543-633, Elsevier.
    19. Flavio Cunha & James Heckman, 2006. "The Evolution of Labor Earnings Risk in the US Economy," 2006 Meeting Papers 665, Society for Economic Dynamics.
    20. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    2. Pedro Carneiro & Sokbae (Simon) Lee, 2005. "Ability, sorting and wage inequality," CeMMAP working papers CWP16/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    4. Anders Forslund & Oskar Nordström Stans, 2006. "Swedish Youth Labour Market Policies Revisited," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 75(3), pages 168-185.
    5. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    6. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    8. Flavio Cunha & James Heckman & Salvador Navarro, 2005. "Separating uncertainty from heterogeneity in life cycle earnings," Oxford Economic Papers, Oxford University Press, vol. 57(2), pages 191-261, April.
    9. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    10. Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015. "The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.
    11. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    12. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    13. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    14. Lee, Ji Hyung & Park, Byoung G., 2023. "Nonparametric identification and estimation of the extended Roy model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1087-1113.
    15. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    16. Christian Belzil, 2008. "Testing the Specification of the Mincer Wage Equation," Annals of Economics and Statistics, GENES, issue 91-92, pages 427-451.
    17. Giorgio Calzolari & Antonino Di Pino, 2017. "Self-selection and direct estimation of across-regime correlation parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2142-2160, September.
    18. Tavneet Suri, 2006. "Selection and Comparative Advantage in Technology Adoption," Working Papers 944, Economic Growth Center, Yale University.
    19. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Childhood Intervention," IZA Discussion Papers 13101, Institute of Labor Economics (IZA).
    20. Stefan Boes, 2009. "Partial Identification of Discrete Counterfactual Distributions with Sequential Update of Information," SOI - Working Papers 0918, Socioeconomic Institute - University of Zurich.

    More about this item

    JEL classification:

    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General
    • I30 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:12505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.