IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0316.html
   My bibliography  Save this paper

Dynamic Discrete Choice and Dynamic Treatment Effects

Author

Listed:
  • James J. Heckman
  • Salvador Navarro

Abstract

This paper considers semiparametric identification of structural dynamic discrete choice models and models for dynamic treatment effects. Time to treatment and counterfactual outcomes associated with treatment times are jointly analyzed. We examine the implicit assumptions of the dynamic treatment model using the structural model as a benchmark. For the structural model we show the gains from using cross equation restrictions connecting choices to associated measurements and outcomes. In the dynamic discrete choice model, we identify both subjective and objective outcomes, distinguishing ex post and ex ante outcomes. We show how to identify agent information sets.

Suggested Citation

  • James J. Heckman & Salvador Navarro, 2005. "Dynamic Discrete Choice and Dynamic Treatment Effects," NBER Technical Working Papers 0316, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0316
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0316.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matzkin, Rosa L, 1992. "Nonparametric and Distribution-Free Estimation of the Binary Threshold Crossing and the Binary Choice Models," Econometrica, Econometric Society, vol. 60(2), pages 239-270, March.
    2. Hansen, Karsten T. & Heckman, James J. & Mullen, K.J.Kathleen J., 2004. "The effect of schooling and ability on achievement test scores," Journal of Econometrics, Elsevier, vol. 121(1-2), pages 39-98.
    3. Rust, John, 1987. "Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher," Econometrica, Econometric Society, vol. 55(5), pages 999-1033, September.
    4. James J. Heckman & Sergio Urzua & Edward Vytlacil, 2006. "Understanding Instrumental Variables in Models with Essential Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 88(3), pages 389-432, August.
    5. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males," Journal of Political Economy, University of Chicago Press, vol. 106(2), pages 262-333, April.
    6. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    7. Matzkin, Rosa L., 1986. "Restrictions of economic theory in nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 42, pages 2523-2558, Elsevier.
    8. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2002. "Removing the Veil of Ignorance in Assessing the Distributional Impacts of Social Policies," NBER Working Papers 8840, National Bureau of Economic Research, Inc.
    9. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Cunha, Flavio & Heckman, James, 2008. "A New Framework For The Analysis Of Inequality," Macroeconomic Dynamics, Cambridge University Press, vol. 12(S2), pages 315-354, September.
    11. Wolpin, Kenneth I, 1984. "An Estimable Dynamic Stochastic Model of Fertility and Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 92(5), pages 852-874, October.
    12. Flavio Cunha & James J. Heckman & Salvador Navarro, 2007. "The Identification And Economic Content Of Ordered Choice Models With Stochastic Thresholds," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1273-1309, November.
    13. Taber, Christopher R., 2000. "Semiparametric identification and heterogeneity in discrete choice dynamic programming models," Journal of Econometrics, Elsevier, vol. 96(2), pages 201-229, June.
    14. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College," NBER Working Papers 9546, National Bureau of Economic Research, Inc.
    15. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    16. Flavio Cunha & James Heckman & Salvador Navarro, 2005. "Separating uncertainty from heterogeneity in life cycle earnings," Oxford Economic Papers, Oxford University Press, vol. 57(2), pages 191-261, April.
    17. James Heckman & Lance Lochner & Christopher Taber, 1998. "Explaining Rising Wage Inequality: Explanations With A Dynamic General Equilibrium Model of Labor Earnings With Heterogeneous Agents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(1), pages 1-58, January.
    18. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    19. Geert Ridder, 1990. "The Non-Parametric Identification of Generalized Accelerated Failure-Time Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(2), pages 167-181.
    20. Christian Belzil & Jörgen Hansen, 2002. "Unobserved Ability and the Return to Schooling," Econometrica, Econometric Society, vol. 70(5), pages 2075-2091, September.
    21. Thierry Magnac & David Thesmar, 2002. "Identifying Dynamic Discrete Decision Processes," Econometrica, Econometric Society, vol. 70(2), pages 801-816, March.
    22. Stephen V. Cameron & James J. Heckman, 1998. "Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts," NBER Working Papers 6385, National Bureau of Economic Research, Inc.
    23. Hotz, V Joseph & Miller, Robert A, 1988. "An Empirical Analysis of Life Cycle Fertility and Female Labor Supply," Econometrica, Econometric Society, vol. 56(1), pages 91-118, January.
    24. V. Joseph Hotz & Robert A. Miller, 1993. "Conditional Choice Probabilities and the Estimation of Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 497-529.
    25. Wolpin, Kenneth I, 1987. "Estimating a Structural Search Model: The Transition from School to Work," Econometrica, Econometric Society, vol. 55(4), pages 801-817, July.
    26. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    27. Jacob A. Mincer, 1974. "Introduction to "Schooling, Experience, and Earnings"," NBER Chapters, in: Schooling, Experience, and Earnings, pages 1-4, National Bureau of Economic Research, Inc.
    28. Carneiro, Pedro & Hansen, Karsten T. & Heckman, James J., 2003. "Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," IZA Discussion Papers 767, Institute of Labor Economics (IZA).
    29. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    30. James J. Heckman, 1974. "Effects of Child-Care Programs on Women's Work Effort," NBER Chapters, in: Marriage, Family, Human Capital, and Fertility, pages 136-169, National Bureau of Economic Research, Inc.
    31. MaCurdy, Thomas E, 1981. "An Empirical Model of Labor Supply in a Life-Cycle Setting," Journal of Political Economy, University of Chicago Press, vol. 89(6), pages 1059-1085, December.
    32. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    33. Magnac, Thierry & Maurin, Eric, 2007. "Identification and information in monotone binary models," Journal of Econometrics, Elsevier, vol. 139(1), pages 76-104, July.
    34. Charles F. Manski, 2004. "Measuring Expectations," Econometrica, Econometric Society, vol. 72(5), pages 1329-1376, September.
    35. Pakes, Ariel S, 1986. "Patents as Options: Some Estimates of the Value of Holding European Patent Stocks," Econometrica, Econometric Society, vol. 54(4), pages 755-784, July.
    36. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    37. Keane, Michael P & Wolpin, Kenneth I, 1997. "The Career Decisions of Young Men," Journal of Political Economy, University of Chicago Press, vol. 105(3), pages 473-522, June.
    38. Pedro Carneiro & Karsten T. Hansen & James J. Heckman, 2003. "2001 Lawrence R. Klein Lecture Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 361-422, May.
    39. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    40. Theodore W. Schultz, 1974. "Economics of the Family: Marriage, Children, and Human Capital," NBER Books, National Bureau of Economic Research, Inc, number schu74-1.
    41. Miller, Robert A, 1984. "Job Matching and Occupational Choice," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 1086-1120, December.
    42. James Heckman & Justin L. Tobias & Edward Vytlacil, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Southern Economic Journal, John Wiley & Sons, vol. 68(2), pages 210-223, October.
    43. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    44. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    45. James J. Heckman & Jora Stixrud & Sergio Urzua, 2006. "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 411-482, July.
    46. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    47. Ariel Pakes & Margaret Simpson, 1989. "Patent Renewal Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(1989 Micr), pages 331-410.
    48. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    49. Michael Lechner & Ruth Miquel, 2010. "Identification of the effects of dynamic treatments by sequential conditional independence assumptions," Empirical Economics, Springer, vol. 39(1), pages 111-137, August.
    50. James Heckman & Justin L. Tobias & Edward Vytlacil, 2003. "Simple Estimators for Treatment Parameters in a Latent-Variable Framework," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 748-755, August.
    51. Jacob A. Mincer, 1974. "Schooling and Earnings," NBER Chapters, in: Schooling, Experience, and Earnings, pages 41-63, National Bureau of Economic Research, Inc.
    52. Jacob A. Mincer, 1974. "Schooling, Experience, and Earnings," NBER Books, National Bureau of Economic Research, Inc, number minc74-1.
    53. Manski, Charles F., 1993. "Dynamic choice in social settings : Learning from the experiences of others," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 121-136, July.
    54. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    55. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    56. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    57. Flinn, C. & Heckman, J., 1982. "New methods for analyzing structural models of labor force dynamics," Journal of Econometrics, Elsevier, vol. 18(1), pages 115-168, January.
    58. repec:bla:econom:v:47:y:1980:i:187:p:247-83 is not listed on IDEAS
    59. Zvi Eckstein & Kenneth I. Wolpin, 1999. "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," Econometrica, Econometric Society, vol. 67(6), pages 1295-1340, November.
    60. James J. Heckman & Thomas E. Macurdy, 1980. "A Life Cycle Model of Female Labour Supply," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 47-74.
    61. James J. Heckman, 1981. "Heterogeneity and State Dependence," NBER Chapters, in: Studies in Labor Markets, pages 91-140, National Bureau of Economic Research, Inc.
    62. James J. Heckman & Jeffrey A. Smith, 1998. "Evaluating the Welfare State," NBER Working Papers 6542, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaap Abbring & James Heckman, 2008. "Dynamic policy analysis," CeMMAP working papers CWP05/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
    3. Sebastian Galiani & Juan Pantano, 2021. "Structural Models: Inception and Frontier," NBER Working Papers 28698, National Bureau of Economic Research, Inc.
    4. Belzil, Christian, 2007. "The return to schooling in structural dynamic models: a survey," European Economic Review, Elsevier, vol. 51(5), pages 1059-1105, July.
    5. Jaap H. Abbring, 2010. "Identification of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 367-394, September.
    6. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    7. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    8. Heckman, James J. & Humphries, John Eric & Veramendi, Gregory, 2016. "Dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 191(2), pages 276-292.
    9. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    10. James J. Heckman, 2008. "The Principles Underlying Evaluation Estimators with an Application to Matching," Annals of Economics and Statistics, GENES, issue 91-92, pages 9-73.
    11. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    12. Le-Yu Chen, 2009. "Identification of structural dynamic discrete choice models," CeMMAP working papers CWP08/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Heckman, James J., 2010. "The Assumptions Underlying Evaluation Estimators," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    14. Cunha, Flavio & Heckman, James J., 2007. "Identifying and Estimating the Distributions of Ex Post and Ex Ante Returns to Schooling," Labour Economics, Elsevier, vol. 14(6), pages 870-893, December.
    15. James J. Heckman & Rodrigo Pinto, 2022. "Causality and Econometrics," NBER Working Papers 29787, National Bureau of Economic Research, Inc.
    16. Salvador Navarro, 2011. "Using Observed Choices to Infer Agent's Information: Reconsidering the Importance of Borrowing Constraints, Uncertainty and Preferences in College Attendance," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20118, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    17. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    18. Taber, Christopher R., 2000. "Semiparametric identification and heterogeneity in discrete choice dynamic programming models," Journal of Econometrics, Elsevier, vol. 96(2), pages 201-229, June.
    19. Philipp Eisenhauer & James J. Heckman & Stefano Mosso, 2015. "Estimation Of Dynamic Discrete Choice Models By Maximum Likelihood And The Simulated Method Of Moments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 331-357, May.
    20. Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015. "The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.