IDEAS home Printed from https://ideas.repec.org/p/mos/moswps/2010-46.html
   My bibliography  Save this paper

Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka

Author

Listed:
  • Dinusha Dharmaratna
  • Edwyna Harris

Abstract

This paper formulates a demand model for residential water in Sri Lanka using the Stone-Geary functional form. This functional form has two main advantages when compared with Cobb-Douglas: non-constant price elasticities and; it considers water consumption as two components – a fixed and a residual. These two components allow us to estimate the threshold below which water consumption is non-responsive to price changes. Our findings show that the portion of water use insensitive to price changes in Sri Lanka is between 0.64 and 1.06 per capita per month. This is below estimates for developed countries indicating that reducing water consumption via price instruments may be more successful in developing countries. Price elasticity ranges from -0.11 to -0.14 and the income elasticity varies from 0.11 to 0.14. These estimates are similar to those for developed countries suggesting policy makers should not rely solely on price instruments to reduce water consumption.

Suggested Citation

  • Dinusha Dharmaratna & Edwyna Harris, 2010. "Estimating Residential Water Demand using the Stone-Geary Functional Form: the Case of Sri Lanka," Monash Economics Working Papers 46-10, Monash University, Department of Economics.
  • Handle: RePEc:mos:moswps:2010-46
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/eco/research/papers/2010/4610estimatingdharmaratnaharris.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garcia, Serge & Reynaud, Arnaud, 2004. "Estimating the benefits of efficient water pricing in France," Resource and Energy Economics, Elsevier, vol. 26(1), pages 1-25, March.
    2. Jasper M. Dalhuisen & Raymond J. G. M. Florax & JHenri L. F. de Groot & Peter Nijkamp, 2003. "Price and Income Elasticities of Residential Water Demand: A Meta-Analysis," Land Economics, University of Wisconsin Press, vol. 79(2), pages 292-308.
    3. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
    4. R. Bruce Billings, 1982. "Specification of Block Rate Price Variables in Demand Models," Land Economics, University of Wisconsin Press, vol. 58(3), pages 386-394.
    5. Céline Nauges & Alban Thomas, 2000. "Privately Operated Water Utilities, Municipal Price Negotiation, and Estimation of Residential Water Demand: The Case of France," Land Economics, University of Wisconsin Press, vol. 76(1), pages 68-85.
    6. Roberto Martinez-Espineira & Celine Nauges, 2004. "Is all domestic water consumption sensitive to price control?," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1697-1703.
    7. Mary E. Renwick & Sandra O. Archibald, 1998. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?," Land Economics, University of Wisconsin Press, vol. 74(3), pages 343-359.
    8. Julie A. Hewitt & W. Michael Hanemann, 1995. "A Discrete/Continuous Choice Approach to Residential Water Demand under Block Rate Pricing," Land Economics, University of Wisconsin Press, vol. 71(2), pages 173-192.
    9. Cristina C. David & Arlene B. Inocencio, 1998. "Understanding Household Demand for Water: The Metro Manila Case," EEPSEA Research Report rr1998012, Economy and Environment Program for Southeast Asia (EEPSEA), revised Jan 1998.
    10. R. Martínez-Espiñeira, 2003. "Estimating Water Demand under Increasing-Block Tariffs Using Aggregate Data and Proportions of Users per Block," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 5-23, September.
    11. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    12. Henry S. Foster, Jr. & Bruce R. Beattie, 1981. "On the Specification of Price in Studies of Consumer Demand under Block Price Scheduling," Land Economics, University of Wisconsin Press, vol. 57(4), pages 624-629.
    13. R. Bruce Billings & Donald E. Agthe, 1980. "Price Elasticities for Water: A Case of Increasing Block Rates," Land Economics, University of Wisconsin Press, vol. 56(1), pages 73-84.
    14. Henry S. Foster, Jr. & Bruce R. Beattie, 1979. "Urban Residential Demand for Water in the United States," Land Economics, University of Wisconsin Press, vol. 55(1), pages 43-58.
    15. Sylvestre Gaudin & Ronald C. Griffin & Robin C. Sickles, 2001. "Demand Specification for Municipal Water Management: Evaluation of the Stone-Geary Form," Land Economics, University of Wisconsin Press, vol. 77(3), pages 399-422.
    16. Michael L. Nieswiadomy & David J. Molina, 1989. "Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates Using Household Data," Land Economics, University of Wisconsin Press, vol. 65(3), pages 280-289.
    17. Piet Rietveld & Jan Rouwendal & Bert Zwart, 2000. "Block Rate Pricing of Water in Indonesia: An Analysis of Welfare Effects," Bulletin of Indonesian Economic Studies, Taylor & Francis Journals, vol. 36(3), pages 73-92.
    18. Im, K.S. & Pesaran, M.H., 2003. "On The Panel Unit Root Tests Using Nonlinear Instrumental Variables," Cambridge Working Papers in Economics 0347, Faculty of Economics, University of Cambridge.
    19. David L. Chicoine & Ganapathi Ramamurthy, 1986. "Evidence on the Specification of Price in the Study of Domestic Water Demand," Land Economics, University of Wisconsin Press, vol. 62(1), pages 26-32.
    20. Ellen M. Pint, 1999. "Household Responses to Increased Water Rates during the California Drought," Land Economics, University of Wisconsin Press, vol. 75(2), pages 246-266.
    21. Lester D. Taylor, 1975. "The Demand for Electricity: A Survey," Bell Journal of Economics, The RAND Corporation, vol. 6(1), pages 74-110, Spring.
    22. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinusha Dharmaratna & Edwyna Harris, 2012. "Estimating Residential Water Demand Using the Stone-Geary Functional Form: The Case of Sri Lanka," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2283-2299, June.
    2. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    3. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    4. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    5. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    6. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    7. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    8. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    9. Darío F. Jiménez & Sergio A. Orrego & Felipe A. Vásquez & Roberto D. Ponce, 2017. "Estimating water demand for urban residential use using a discrete-continuous model and disaggregated data at the household level: the case of the city of Manizales, Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 86, pages 153-178, Enero - J.
    10. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    11. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
    12. Rita Martins & Adelino Fortunato, 2005. "Residential water demand under block rates: a Portuguese case study," GEMF Working Papers 2005-09, GEMF, Faculty of Economics, University of Coimbra.
    13. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    14. Jiménez, Darío F. & Orrego, Sergio A. & Vásquez, Felipe A. & Ponce, Roberto D., 2016. "Estimación de la demanda de agua para uso residencial urbano usando un modelo discreto-continuo y datos desagregados a nivel de hogar: el caso de la ciudad de Manizales, Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 86, pages 153-178, December.
    15. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    16. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
    17. Ruijs, A. & Zimmermann, A. & van den Berg, M., 2008. "Demand and distributional effects of water pricing policies," Ecological Economics, Elsevier, vol. 66(2-3), pages 506-516, June.
    18. Olmstead, Sheila M. & Michael Hanemann, W. & Stavins, Robert N., 2007. "Water demand under alternative price structures," Journal of Environmental Economics and Management, Elsevier, vol. 54(2), pages 181-198, September.
    19. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.
    20. Tchigriaeva, Elena & Lott, Corey & Kimberly, Rollins, 2014. "Modeling effects of multiple conservation policy instruments and exogenous factors on urban residential water demand through household heterogeneity," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170605, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Stone-Geary; water demand; water pricing; block pricing; Sri Lanka;
    All these keywords.

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices
    • Q25 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Water
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mos:moswps:2010-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Simon Angus (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.