IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/14-19.html
   My bibliography  Save this paper

On the Interpretation of Instrumental Variables in the Presence of Specification Errors

Author

Listed:
  • Stephen G. Hall,
  • P. A. V. B. Swamy
  • George S. Tavlas

Abstract

The method of instrumental variables (IV) and the generalized method of moments (GMM), and their applications to the estimation of errors-in-variables and simultaneous equations models in econometrics, require data on a sufficient number of instrumental variables that are both exogenous and relevant. We argue that, in general, such instruments (weak or strong) cannot exist.

Suggested Citation

  • Stephen G. Hall, & P. A. V. B. Swamy & George S. Tavlas, 2014. "On the Interpretation of Instrumental Variables in the Presence of Specification Errors," Discussion Papers in Economics 14/19, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:14/19
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp14-19.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stephen Hall & P. Swamy & George Tavlas, 2012. "Generalized cointegration: a new concept with an application to health expenditure and health outcomes," Empirical Economics, Springer, vol. 42(2), pages 603-618, April.
    2. Xu Cheng & Zhipeng Liao, 2011. "Select the Valid and Relevant Moments: An Information-Based LASSO for GMM with Many Moments, Second Version," PIER Working Paper Archive 13-062, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 21 Oct 2013.
    3. Timothy G. Conley & Christian B. Hansen & Peter E. Rossi, 2012. "Plausibly Exogenous," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 260-272, February.
    4. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(2), pages 387-421, April.
    5. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    6. Swamy, P.A.V.B. & Tavlas, G.S. & Hall, S.G., 2015. "Microproduction Functions With Unique Coefficients And Errors: A Reconsideration And Respecification," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 311-333, March.
    7. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    8. Pratt, John W. & Schlaifer, Robert, 1988. "On the interpretation and observation of laws," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 23-52.
    9. P. Swamy & George Tavlas, 2007. "The New Keynesian Phillips Curve and Inflation Expectations: Re-Specification and Interpretation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 31(2), pages 293-306, May.
    10. Granger Clive W.J., 2008. "Non-Linear Models: Where Do We Go Next - Time Varying Parameter Models?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-11, September.
    11. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    2. Duo Qin, 2019. "Let’s take the bias out of econometrics," Journal of Economic Methodology, Taylor & Francis Journals, vol. 26(2), pages 81-98, April.
    3. Burkhard Raunig, 2017. "On The Interpretation of Instrumental Variables in the Presence of Specification Errors: A Causal Comment," Econometrics, MDPI, vol. 5(3), pages 1-6, July.
    4. Duo Qin & Sophie Van Huellen & Qing-Chao Wang, 2015. "How Credible Are Shrinking Wage Elasticities of Married Women Labour Supply?," Econometrics, MDPI, vol. 4(1), pages 1-31, December.
    5. P.A.V.B. Swamy & Stephen G. Hall & George S. Tavlas & I-Lok Chang & Heather D. Gibson & William H. Greene & Jatinder S. Mehta, 2016. "A Method for Measuring Treatment Effects on the Treated without Randomization," Econometrics, MDPI, vol. 4(2), pages 1-23, March.
    6. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    7. Sergio Scicchitano, 2015. "Exploring the gender wage gap in the managerial labour market:a counterfactual decomposition analysis," Working Papers 2, Department of the Treasury, Ministry of the Economy and of Finance.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    2. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    3. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    4. Hall, Stephen G. & Hondroyiannis, George & Kenjegaliev, Amangeldi & Swamy, P.A.V.B. & Tavlas, George S., 2013. "Is the relationship between prices and exchange rates homogeneous?," Journal of International Money and Finance, Elsevier, vol. 37(C), pages 411-438.
    5. Stephen G. Hall & P. A. V. B. Swamy & George S. Tavlas, 2012. "Milton Friedman, the demand for money, and the ECB’s monetary policy strategy," Review, Federal Reserve Bank of St. Louis, vol. 94(May), pages 153-186.
    6. Hall, Stephen G. & Swamy, P. A. V. B. & Tavlas, George S., 2017. "Time-Varying Coefficient Models: A Proposal For Selecting The Coefficient Driver Sets," Macroeconomic Dynamics, Cambridge University Press, vol. 21(5), pages 1158-1174, July.
    7. Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 14-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2014.
    8. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    9. Swamy P. A. V. B. & Tavlas George S & Hall Stephen G. F. & Hondroyiannis George, 2010. "Estimation of Parameters in the Presence of Model Misspecification and Measurement Error," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-35, May.
    10. Vance, Colin & Frondel, Manuel, 2015. "From fuel taxation to efficiency standards: A wrong turn in European climate protection?," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113171, Verein für Socialpolitik / German Economic Association.
    11. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    12. Stephen G. Hall & Heather D. Gibson & G. S. Tavlas & Mike G. Tsionas, 2020. "A Monte Carlo Study of Time Varying Coefficient (TVC) Estimation," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 115-130, June.
    13. Subha Mani, 2012. "Is there Complete, Partial, or No Recovery from Childhood Malnutrition? – Empirical Evidence from Indonesia," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 691-715, October.
    14. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    15. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Tito Belchior Silva Moreira & Benjamin Miranda Tabak & Mario Jorge Mendonça & Adolfo Sachsida, 2016. "An Evaluation of the Non-Neutrality of Money," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    17. Cinthya Caamal Olvera., 2007. "Oferta Laboral en México: un enfoque de variables instrumentales," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 115-154, May.
    18. Escarce, José J. & Rocco, Lorenzo, 2021. "Effect of immigration on depression among older natives in Western Europe," The Journal of the Economics of Ageing, Elsevier, vol. 20(C).
    19. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    20. Rietveld, Cornelius A. & Webbink, Dinand, 2016. "On the genetic bias of the quarter of birth instrument," Economics & Human Biology, Elsevier, vol. 21(C), pages 137-146.

    More about this item

    Keywords

    instrumental variables; generalized method of moments; random coefficient models;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:14/19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.