IDEAS home Printed from https://ideas.repec.org/p/kan/wpaper/201227.html
   My bibliography  Save this paper

Center Manifold, Stability, and Bifurcations in Continuous Time Macroeconometric Systems

Author

Listed:
  • William Barnett

    (Department of Economics, University of Kansas)

  • Yijun He

    (Washington University in St.Louis)

Abstract

In a recent paper, we studied bifurcation phenomena in continuous time macroeconometric models. The objective was to explore the relevancy of Grandmont's (1985) findings to models permitting more reasonable elasticities than were possible in Grandmont's Cobb Douglas overlapping generations model. Another objective was to explore the relevancy of his findings to a model in which some solution paths are not Pareto optimal, so that policy rules can serve a clearly positive purpose. We used the Bergstrom, Nowman, and Wymer (1992) UK continuous time second order differential equations macroeconometric model that permits closer connection with economic theory than is possible with most discrete time structural macroeconometric models. We do not yet have the ability to explore these phenomena in a comparably general Euler equations model having deep parameters, rather than structural parameters. It was discovered that the UK model displays a rich set of bifurcations including transcritical bifurcations, Hopf bifurcations, and codimension two bifurcations. The point estimates of the parameters are in the unstable region. But we did not test the null hypothesis that the parameters are actually in the stable region. In addition, we did not investigate the dynamical properties on the bifurcation boundaries; and we did not investigate the relevancy of stabilization policy rules. In this paper, we further examine the stability properties and bifurcation boundaries of the UK continuous time macroeconometric models by analyzing the stability of the model along center manifolds. The results of this paper show that the model is unstable on bifurcation boundaries for those cases we consider. Hence calibration of the model to operate on those bifurcation boundaries would produce no increase in the model's ability to explain observed data. However, we have not yet determined the dynamic properties of the model on the Hopf bifurcation boundaries, which sometimes do produce useful dynamical properties for some models. Of more immediate interest, it is also shown that bifurcations exist within the Cartesian product of 95% confidence intervals for the estimators of the individual parameters. This seems to suggest that we cannot reject the null hypothesis of stability, despite the fact that the point estimates are in the unstable region. However, when we decreased the confidence level to 90%, the intersection of the stable region and the Cartesian product of the confidence intervals became empty, thereby suggesting rejection of stability. But a formal sampling theoretic hypothesis test of that null would be very difficult to conduct, since some of the sampling distributions are truncated by boundaries, and since there are some corner solutions. A Bayesian approach might be possible, but would be very difficult to implement. A new formula is also given for finding the closed forms of transcritical bifurcation boundaries. Finally, effects of fiscal policy on stability are considered. It is found that change in fiscal policy may affect the stability of the continuous time macroeconometric models. But we find that the selection of an advantageous stabilization policy is more difficult than expected. Augmentation of the model by feedback policy rules chosen from plausible economic reasoning can contract the stable region and thereby be counterproductive, even if the policy is time consistent and has insignificant effect on structural parameter values.

Suggested Citation

  • William Barnett & Yijun He, 2012. "Center Manifold, Stability, and Bifurcations in Continuous Time Macroeconometric Systems," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201227, University of Kansas, Department of Economics, revised Sep 2012.
  • Handle: RePEc:kan:wpaper:201227
    as

    Download full text from publisher

    File URL: http://www2.ku.edu/~kuwpaper/2009Papers/201227.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nieuwenhuis, Herman J. & Schoonbeek, Lambert, 1997. "Stability and the structure of continuous-time economic models," Economic Modelling, Elsevier, vol. 14(3), pages 311-340, July.
    2. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan, 2004. "A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 581-615, Emerald Group Publishing Limited.
    3. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    4. Grandmont, Jean-Michel, 1985. "On Endogenous Competitive Business Cycles," Econometrica, Econometric Society, vol. 53(5), pages 995-1045, September.
    5. Wymer, Clifford R., 1997. "Structural Nonlinear Continuous-Time Models In Econometrics," Macroeconomic Dynamics, Cambridge University Press, vol. 1(2), pages 518-548, June.
    6. Herbert E. Scarf, 1959. "Some Examples of Global Instability of the Competitive Equilibrium," Cowles Foundation Discussion Papers 79, Cowles Foundation for Research in Economics, Yale University.
    7. Goenka, Aditya & Kelly, David L. & Spear, Stephen E., 1998. "Endogenous Strategic Business Cycles," Journal of Economic Theory, Elsevier, vol. 81(1), pages 97-125, July.
    8. Jean-Michel Grandmont, 1998. "Expectations Formation and Stability of Large Socioeconomic Systems," Econometrica, Econometric Society, vol. 66(4), pages 741-782, July.
    9. Engelbert Dockner & Gustav Feichtinger, 1991. "On the optimality of limit cycles in dynamic economic systems," Journal of Economics, Springer, vol. 53(1), pages 31-50, February.
    10. Jess Benhabib & Kazuo Nishimura, 2012. "The Hopf Bifurcation and Existence and Stability of Closed Orbits in Multisector Models of Optimal Economic Growth," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 51-73, Springer.
    11. Bergstrom, A. R. & Nowman, K. B. & Wymer, C. R., 1992. "Gaussian estimation of a second order continuous time macroeconometric model of the UK," Economic Modelling, Elsevier, vol. 9(4), pages 313-351, October.
    12. Bergstrom, A. R. & Nowman, K. B. & Wandasiewicz, S., 1994. "Monetary and fiscal policy in a second-order continuous time macroeconometric model of the United Kingdom," Journal of Economic Dynamics and Control, Elsevier, vol. 18(3-4), pages 731-761.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William A. Barnett & Yijun He & ., 1999. "Stabilization Policy as Bifurcation Selection: Would Keynesian Policy Work if the World Really were Keynesian?," Macroeconomics 9906008, University Library of Munich, Germany.
    2. Barnett, William A. & He, Susan, 2010. "Existence of singularity bifurcation in an Euler-equations model of the United States economy: Grandmont was right," Economic Modelling, Elsevier, vol. 27(6), pages 1345-1354, November.
    3. He, Yijun & Barnett, William A., 2006. "Existence of bifurcation in macroeconomic dynamics: Grandmont was right," MPRA Paper 756, University Library of Munich, Germany.
    4. Barnett, William A. & Chen, Guo, 2015. "Bifurcation of Macroeconometric Models and Robustness of Dynamical Inferences," Foundations and Trends(R) in Econometrics, now publishers, vol. 8(1-2), pages 1-144, September.
    5. William Barnett & Evgeniya Duzhak, 2010. "Empirical assessment of bifurcation regions within New Keynesian models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 45(1), pages 99-128, October.
    6. Barnett, William A. & Duzhak, Evgeniya Aleksandrovna, 2008. "Non-robust dynamic inferences from macroeconometric models: Bifurcation stratification of confidence regions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3817-3825.
    7. William A. Barnett & Yijun He, 2002. "Bifurcations in Macroeconomic Models," Macroeconomics 0210006, University Library of Munich, Germany.
    8. Calvet, Laurent-Emmanuel & Grandmont, Jean-Michel & Lemaire, Isabelle, 2018. "Aggregation of heterogenous beliefs, asset pricing, and risk sharing in complete financial markets," Research in Economics, Elsevier, vol. 72(1), pages 117-146.
    9. Banerjee, Sanjibani & A. Barnett, William & A. Duzhak, Evgeniya & Gopalan, Ramu, 2011. "Bifurcation analysis of Zellner's Marshallian Macroeconomic Model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(9), pages 1577-1585, September.
    10. Barnett, William A. & Serletis, Apostolos & Serletis, Demitre, 2015. "Nonlinear And Complex Dynamics In Economics," Macroeconomic Dynamics, Cambridge University Press, vol. 19(8), pages 1749-1779, December.
    11. William Barnett & Morgan Rose, 2005. "Joseph Schumpeter and Modern Nonlinear Dynamics," Method and Hist of Econ Thought 0504001, University Library of Munich, Germany.
    12. He, Yijun & Barnett, William A., 2006. "Singularity bifurcations," Journal of Macroeconomics, Elsevier, vol. 28(1), pages 5-22, March.
    13. William A. Barnett & Yijun He, 1998. "Bifurcations in Continuous-Time Macroeconomic Systems," Macroeconomics 9805018, University Library of Munich, Germany.
    14. Serletis, Apostolos & He, Mingyu & Chowdhury, M.M. Islam, 2023. "Chaos in long-maturity real rates," Economics Letters, Elsevier, vol. 225(C).
    15. Kieran P. Donaghy, 1998. "Incomes Policies Revisited," Working Papers 46, Sapienza University of Rome, CIDEI.
    16. Kelly, David L. & Shorish, Jamsheed, 2000. "Stability of Functional Rational Expectations Equilibria," Journal of Economic Theory, Elsevier, vol. 95(2), pages 215-250, December.
    17. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    18. Angeletos, George-Marios & Calvet, Laurent-Emmanuel, 2005. "Incomplete-market dynamics in a neoclassical production economy," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 407-438, August.
    19. Orrego, Fabrizio, 2011. "Demografía y precios de activos," Revista Estudios Económicos, Banco Central de Reserva del Perú, issue 22, pages 83-101.
    20. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.

    More about this item

    Keywords

    Stability; bifurcation; macroeconometric systems;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:201227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.