IDEAS home Printed from https://ideas.repec.org/p/itt/wpaper/wp2009-3.html
   My bibliography  Save this paper

Survey Data as Coincident or Leading Indicators

Author

Listed:
  • Cecilia Frale
  • Massimiliano Marcellino
  • Gian Luigi Mazzi
  • Tommaso Proietti

Abstract

In this paper we propose a monthly measure for the euro area Gross Domestic Product (GDP) based on a small scale factor model for mixed frequency data, featuring two factors: the first is driven by hard data, whereas the second captures the contribution of survey variables as coincident indicators. Within this framework we evaluate both the in-sample contribution of the second survey-based factor, and the short term forecasting performance of the model in a pseudo-real time experiment. We find that the survey-based factor plays a significant role for two components of GDP: Industrial Value Added and Exports. Moreover, the two factor model outperforms in terms of out of sample forecasting accuracy the traditional autoregressive distributed lags (ADL) specifications and the single factor model, with few exceptions for Exports and in growth rates.

Suggested Citation

  • Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, "undated". "Survey Data as Coincident or Leading Indicators," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
  • Handle: RePEc:itt:wpaper:wp2009-3
    as

    Download full text from publisher

    File URL: http://www.dt.tesoro.it/modules/documenti_it/analisi_progammazione/working_papers/WP_n_3_2009.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    4. N. G. Shephard & A. C. Harvey, 1990. "On The Probability Of Estimating A Deterministic Component In The Local Level Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(4), pages 339-347, July.
    5. Alex S. Morton & Granville Tunnicliffe‐Wilson, 2004. "A class of modified high‐order autoregressive models with improved resolution of low‐frequency cycles," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 235-250, March.
    6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    9. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    10. Tommaso Proietti & Cecilia Frale, 2011. "New proposals for the quantification of qualitative survey data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 393-408, July.
    11. S. J. Koopman & J. Durbin, 2000. "Fast Filtering and Smoothing for Multivariate State Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(3), pages 281-296, May.
    12. Andrew Harvey & Chia‐Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    13. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    14. Tommaso Proietti & Filippo Moauro, 2006. "Dynamic factor analysis with non‐linear temporal aggregation constraints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 281-300, April.
    15. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    16. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    17. Litterman, Robert B, 1983. "A Random Walk, Markov Model for the Distribution of Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 169-173, April.
    18. Cecilia Frale & Massimiliano Marcellino & Gian Luigi Mazzi & Tommaso Proietti, 2008. "A Monthly Indicator of the Euro Area GDP," Economics Working Papers ECO2008/32, European University Institute.
    19. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    20. Harvey, Andrew & Proietti, Tommaso (ed.), 2005. "Readings in Unobserved Components Models," OUP Catalogue, Oxford University Press, number 9780199278695.
    21. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecilia Frale, "undated". "Do Surveys Help in Macroeconomic Variables Disaggregation and Estimation?," Working Papers wp2008-2, Department of the Treasury, Ministry of the Economy and of Finance.
    2. Marcellino, Massimiliano & Proietti, Tommaso & Frale, Cecilia & Mazzi, Gian Luigi, 2008. "A Monthly Indicator of the Euro Area GDP," CEPR Discussion Papers 7007, C.E.P.R. Discussion Papers.
    3. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    4. Tommaso Proietti & Alessandro Giovannelli, 2021. "Nowcasting monthly GDP with big data: A model averaging approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
    5. Cecilia Frale & Libero Monteforte, "undated". "FaMIDAS: A Mixed Frequency Factor Model with MIDAS structure," Working Papers 3, Department of the Treasury, Ministry of the Economy and of Finance.
    6. Maximo Camacho & Gabriel Perez-Quiros, 2010. "Introducing the euro-sting: Short-term indicator of euro area growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 663-694.
    7. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    8. Laura Bisio & Filippo Moauro, 2018. "Temporal disaggregation by dynamic regressions: Recent developments in Italian quarterly national accounts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 471-494, November.
    9. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    10. Marco Cacciotti & Cecilia Frale & Serena Teobaldo, 2013. "A new methodology for a quarterly measure of the output gap," Working Papers 6, Department of the Treasury, Ministry of the Economy and of Finance.
    11. Marco Cacciotti & Cecilia Frale & Serena Teobaldo, 2013. "A new methodology for a quarterly measure of the Output Gap," Working Papers LuissLab 13103, Dipartimento di Economia e Finanza, LUISS Guido Carli.
    12. Moauro, Filippo, 2010. "A monthly indicator of employment in the euro area: real time analysis of indirect estimates," MPRA Paper 27797, University Library of Munich, Germany, revised 30 Dec 2010.
    13. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    14. Cecilia Frale, Serena Teobaldo, Marco Cacciotti, Alessandra Caretta, 2013. "A Quarterly Measure Of Potential Output In The New European Fiscal Framework," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 67(2), pages 181-197, April-Jun.
    15. Sieds, 2013. "Complete Volume LXVII n.2 2013," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 67(2), pages 1-197, April-Jun.
    16. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    17. Libero Monteforte & Valentina Raponi, 2019. "Short‐term forecasts of economic activity: Are fortnightly factors useful?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(3), pages 207-221, April.
    18. Aleksandra Riedl & Julia Wörz, 2018. "A simple approach to nowcasting GDP growth in CESEE economies," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q4/18, pages 56-74.
    19. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    20. Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201316, University of Hawaii at Manoa, Department of Economics.

    More about this item

    Keywords

    Survey data; Forecasting; Temporal Disaggregation; Dynamic factor modes; Kalman Filter and smoother;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:itt:wpaper:wp2009-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michele Petrocelli (email available below). General contact details of provider: https://edirc.repec.org/data/tesgvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.