IDEAS home Printed from https://ideas.repec.org/p/isu/genres/12022.html
   My bibliography  Save this paper

Four Parameters of Interest in the Evaluation of Social Programs

Author

Listed:
  • Heckman, J J
  • Tobias, Justin
  • Vytlacil, Ed

Abstract

This paper reviews four treatment parameters which have become commonly used in the program evaluation literature: the Average Treatment Effect (ATE), the effect of Treatment on the Treated (TT), the Local Average Treatment Effect (LATE) and the Marginal Treatment Effect (MTE). We derive simply computed closed-form expressions for these treatment parameters in a latent variable framework with Gaussian error terms. We also briefly describe recent work which seeks to go beyond mean effects and estimate the {distributions} associated with various outcome gains.

Suggested Citation

  • Heckman, J J & Tobias, Justin & Vytlacil, Ed, 2001. "Four Parameters of Interest in the Evaluation of Social Programs," Staff General Research Papers Archive 12022, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:12022
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vijverberg, Wim P. M., 1993. "Measuring the unidentified parameter of the extended Roy model of selectivity," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 69-89.
    2. Poirier, Dale J & Tobias, Justin L, 2003. "On the Predictive Distributions of Outcome Gains in the Presence of an Unidentified Parameter," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 258-268, April.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Paarsch, Harry J., 1984. "A Monte Carlo comparison of estimators for censored regression models," Journal of Econometrics, Elsevier, vol. 24(1-2), pages 197-213.
    5. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    6. Heckman, James J. & Vytlacil, Edward J., 2000. "The relationship between treatment parameters within a latent variable framework," Economics Letters, Elsevier, vol. 66(1), pages 33-39, January.
    7. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-1149, September.
    8. Gronau, Reuben, 1974. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, University of Chicago Press, vol. 82(6), pages 1119-1143, Nov.-Dec..
    9. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    10. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    11. Lee, Lung-Fei, 1978. "Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 415-433, June.
    12. James J. Heckman & Jeffrey A. Smith, 1998. "Evaluating the Welfare State," NBER Working Papers 6542, National Bureau of Economic Research, Inc.
    13. Koop, Gary & Poirier, Dale J., 1997. "Learning about the across-regime correlation in switching regression models," Journal of Econometrics, Elsevier, vol. 78(2), pages 217-227, June.
    14. Poirier, D.J. & Tobias, L., 2001. "Across-Regime Covariance Restrictions in Treatment Response Models," Papers 00-01-29, California Irvine - School of Social Sciences.
    15. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    16. Donald W. K. Andrews & Marcia M. A. Schafgans, 1998. "Semiparametric Estimation of the Intercept of a Sample Selection Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 497-517.
    17. Arild Aakvik & James J. Heckman & Edward J. Vytlacil, 2000. "Treatment Effects for Discrete Outcomes when Responses to Treatment Vary Among Observationally Identical Persons: An Application to Norwegian ..," NBER Technical Working Papers 0262, National Bureau of Economic Research, Inc.
    18. Lung-Fei Lee, 1982. "Some Approaches to the Correction of Selectivity Bias," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 49(3), pages 355-372.
    19. James J. Heckman & Justin L. Tobias & Edward Vytlacil, 2000. "Simple Estimators for Treatment Parameters in a Latent Variable Framework with an Application to Estimating the Returns to Schooling," NBER Working Papers 7950, National Bureau of Economic Research, Inc.
    20. Heckman, James J, 1974. "Shadow Prices, Market Wages, and Labor Supply," Econometrica, Econometric Society, vol. 42(4), pages 679-694, July.
    21. A. D. Roy, 1951. "Some Thoughts On The Distribution Of Earnings," Oxford Economic Papers, Oxford University Press, vol. 3(2), pages 135-146.
    22. Bjorklund, Anders & Moffitt, Robert, 1987. "The Estimation of Wage Gains and Welfare Gains in Self-selection," The Review of Economics and Statistics, MIT Press, vol. 69(1), pages 42-49, February.
    23. Edward Vytlacil, 2002. "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," Econometrica, Econometric Society, vol. 70(1), pages 331-341, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingliang Li & Dale J. Poirier & Justin L. Tobias, 2004. "Do dropouts suffer from dropping out? Estimation and prediction of outcome gains in generalized selection models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(2), pages 203-225.
    2. James J. Heckman, 2005. "Micro Data, Heterogeneity and the Evaluation of Public Policy Part 2," The American Economist, Sage Publications, vol. 49(1), pages 16-44, March.
    3. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    4. Philipp Eisenhauer & James J. Heckman & Edward Vytlacil, 2015. "The Generalized Roy Model and the Cost-Benefit Analysis of Social Programs," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 413-443.
    5. Aakvik, Arild & Salvanes, Kjell G. & Vaage, Kjell, 2003. "Measuring Heterogeneity in the Returns to Education in Norway Using Educational Reforms," IZA Discussion Papers 815, Institute of Labor Economics (IZA).
    6. Chen, Heng & Fan, Yanqin & Wu, Jisong, 2014. "A flexible parametric approach for estimating switching regime models and treatment effect parameters," Journal of Econometrics, Elsevier, vol. 181(2), pages 77-91.
    7. Heckman, James J. & Lalonde, Robert J. & Smith, Jeffrey A., 1999. "The economics and econometrics of active labor market programs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 31, pages 1865-2097, Elsevier.
    8. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    9. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    10. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    11. Heckman, James, 2001. "Accounting for Heterogeneity, Diversity and General Equilibrium in Evaluating Social Programmes," Economic Journal, Royal Economic Society, vol. 111(475), pages 654-699, November.
    12. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    13. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    14. Justin Tobias, 2006. "Estimation, Learning and Parameters of Interest in a Multiple Outcome Selection Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 1-40.
    15. Becher, Michael & Stegmueller, Daniel, 2019. "Cognitive Ability, Union Membership, and Voter Turnout," IAST Working Papers 19-97, Institute for Advanced Study in Toulouse (IAST).
    16. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    17. Aakvik, Arild & Heckman, James J. & Vytlacil, Edward J., 2005. "Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 15-51.
    18. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    19. Anirban Basu & James J. Heckman & Salvador Navarro‐Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self‐selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157, November.
    20. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:12022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.