IDEAS home Printed from https://ideas.repec.org/p/hhs/osloec/2000_007.html
   My bibliography  Save this paper

Admissibility and common belief

Author

Listed:
  • Asheim,G.B.
  • Dufwenberg,M.

    (University of Oslo, Department of Economics)

Abstract

The concept of ‘fully permissible sets ’ is defined by an algorithm that eliminate strategy subset . It is characterized as choice sets when there is common certain belief of the event that each player prefer one strategy to another if and only if the former weakly dominate the latter on the sets of all opponent strategie or on the union of the choice sets that are deemed possible for the opponent. the concept refines the Dekel-Fudenberg procedure and captures aspects of forward induction.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Asheim,G.B. & Dufwenberg,M., 2000. "Admissibility and common belief," Memorandum 07/2000, Oslo University, Department of Economics.
  • Handle: RePEc:hhs:osloec:2000_007
    as

    Download full text from publisher

    File URL: http://www.sv.uio.no/econ/english/research/unpublished-works/working-papers/pdf-files/2000/Memo-07-2000.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Battigalli, Pierpaolo, 1996. "Strategic Rationality Orderings and the Best Rationalization Principle," Games and Economic Behavior, Elsevier, vol. 13(2), pages 178-200, April.
    2. Borgers Tilman, 1994. "Weak Dominance and Approximate Common Knowledge," Journal of Economic Theory, Elsevier, vol. 64(1), pages 265-276, October.
    3. Hurkens, Sjaak, 1996. "Multi-sided Pre-play Communication by Burning Money," Journal of Economic Theory, Elsevier, vol. 69(1), pages 186-197, April.
    4. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    5. Samuelson, L., 1989. "Dominated Strategies And Common Knowledge," Papers 5-89-6, Pennsylvania State - Department of Economics.
    6. P. Battigalli & M. Siniscalchi, 1999. "Interactive Beliefs and Forward Induction," Princeton Economic Theory Papers 99f3, Economics Department, Princeton University.
    7. Asheim,G.B., 1999. "Proper consistency," Memorandum 31/1999, Oslo University, Department of Economics.
    8. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    9. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41, World Scientific Publishing Co. Pte. Ltd..
    10. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    11. Christian Ewerhart, 1998. "Rationality and the definition of consistent pairs," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 49-59.
    12. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589819, September.
    13. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    14. Epstein, Larry G & Wang, Tan, 1996. ""Beliefs about Beliefs" without Probabilities," Econometrica, Econometric Society, vol. 64(6), pages 1343-1373, November.
    15. Borgers, Tilman & Samuelson, Larry, 1992. ""Cautious" Utility Maximization and Iterated Weak Dominance," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(1), pages 13-25.
    16. Lawrence Blume & Adam Brandenburger & Eddie Dekel, 2014. "Lexicographic Probabilities and Choice Under Uncertainty," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 6, pages 137-160, World Scientific Publishing Co. Pte. Ltd..
    17. Marco Mariotti, 1997. "Decisions in games: why there should be a special exemption from Bayesian rationality," Journal of Economic Methodology, Taylor & Francis Journals, vol. 4(1), pages 43-60.
    18. MERTENS, Jean-François & ZAMIR, Shmuel, 1985. "Formulation of Bayesian analysis for games with incomplete information," LIDAM Reprints CORE 608, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    20. Geir B. Asheim & Martin Dufwenberg, 2003. "Deductive Reasoning in Extensive Games," Economic Journal, Royal Economic Society, vol. 113(487), pages 305-325, April.
    21. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    22. Geir B. Asheim, 2002. "Proper rationalizability in lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 453-478.
    23. Elchanan Ben-Porath, 1997. "Rationality, Nash Equilibrium and Backwards Induction in Perfect-Information Games," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(1), pages 23-46.
    24. van Damme, Eric, 1989. "Stable equilibria and forward induction," Journal of Economic Theory, Elsevier, vol. 48(2), pages 476-496, August.
    25. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589833, September.
    26. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    27. Blume, Lawrence & Brandenburger, Adam & Dekel, Eddie, 1991. "Lexicographic Probabilities and Equilibrium Refinements," Econometrica, Econometric Society, vol. 59(1), pages 81-98, January.
    28. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    29. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    30. Rajan, Uday, 1998. "Trembles in the Bayesian Foundations of Solution Concepts of Games," Journal of Economic Theory, Elsevier, vol. 82(1), pages 248-266, September.
    31. Kreps,David M. & Wallis,Kenneth F. (ed.), 1997. "Advances in Economics and Econometrics: Theory and Applications," Cambridge Books, Cambridge University Press, number 9780521589826, September.
    32. Samuelson, Larry, 1992. "Dominated strategies and common knowledge," Games and Economic Behavior, Elsevier, vol. 4(2), pages 284-313, April.
    33. Epstein, Larry G., 1997. "Preference, Rationalizability and Equilibrium," Journal of Economic Theory, Elsevier, vol. 73(1), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    2. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    3. Asheim,G.B., 1999. "Proper consistency," Memorandum 31/1999, Oslo University, Department of Economics.
    4. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249, World Scientific Publishing Co. Pte. Ltd..
    6. Geir B. Asheim & Martin Dufwenberg, 2003. "Deductive Reasoning in Extensive Games," Economic Journal, Royal Economic Society, vol. 113(487), pages 305-325, April.
    7. Asheim, Geir B. & Brunnschweiler, Thomas, 2023. "Epistemic foundation of the backward induction paradox," Games and Economic Behavior, Elsevier, vol. 141(C), pages 503-514.
    8. Asheim,G.B. & Perea,A., 2000. "Lexicographic probabilities and rationalizability in extensive games," Memorandum 38/2000, Oslo University, Department of Economics.
    9. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    10. Ziegler, Gabriel & Zuazo-Garin, Peio, 2020. "Strategic cautiousness as an expression of robustness to ambiguity," Games and Economic Behavior, Elsevier, vol. 119(C), pages 197-215.
    11. Ambrus, Attila, 2009. "Theories of Coalitional Rationality," Scholarly Articles 3204917, Harvard University Department of Economics.
    12. Xiao Luo & Yi-Chun Chen, 2004. "A Unified Approach to Information, Knowledge, and Stability," Econometric Society 2004 Far Eastern Meetings 472, Econometric Society.
    13. Barelli, Paulo & Galanis, Spyros, 2013. "Admissibility and event-rationality," Games and Economic Behavior, Elsevier, vol. 77(1), pages 21-40.
    14. Licun Xue, "undated". "A Notion of Consistent Rationalizability - Between Weak and Pearce's Extensive Form Rationalizability," Economics Working Papers 2000-4, Department of Economics and Business Economics, Aarhus University.
    15. Ambrus, Attila, 2009. "Theories of coalitional rationality," Journal of Economic Theory, Elsevier, vol. 144(2), pages 676-695, March.
    16. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    17. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    18. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2019. "Comprehensive rationalizability," Games and Economic Behavior, Elsevier, vol. 116(C), pages 185-202.
    19. Robin Cubitt & Robert Sugden, 2005. "Common reasoning in games: a resolution of the paradoxes of ‘common knowledge of rationality’," Discussion Papers 2005-17, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    20. Robin P. Cubitt & Robert Sugden, 2008. "Common reasoning in games," Discussion Papers 2008-01, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:osloec:2000_007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mari Strønstad Øverås (email available below). General contact details of provider: https://edirc.repec.org/data/souiono.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.