IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-03917335.html
   My bibliography  Save this paper

Esg Investing: A Sentiment Analysis Approach

Author

Listed:
  • Stéphane Goutte

    (Université Paris-Saclay)

  • Viet Hoang Le

    (Université Paris-Saclay)

  • Fei Liu

    (IPAG Business School)

  • Hans-Jörg Mettenheim, Von

    (IPAG Business School)

Abstract

We analyze the predictability of news sentiment (both general news and ESG-related news) on the return of stocks from European and the potential of applying them as a proper trading strategy over seven years from 2015 to 2022. We find that sentiment indicators extracted from news supplied by GDELT such as Tone, Polarity, and Activity Density show significant relationships to the return of the stock price. Those relationships can be exploited, even in the most naive way, to create trading strategies that can be profitable and outperform the market. Furthermore, those indicators can be used as inputs for more sophisticated machine learning algorithms to create even better-performing trading strategies. Among the indicators, those extracted from ESG-related news tend to show better performance in both cases: when they are used naively or as inputs for machine learning algorithms.

Suggested Citation

  • Stéphane Goutte & Viet Hoang Le & Fei Liu & Hans-Jörg Mettenheim, Von, 2023. "Esg Investing: A Sentiment Analysis Approach," Working Papers halshs-03917335, HAL.
  • Handle: RePEc:hal:wpaper:halshs-03917335
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03917335
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03917335/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gunther Capelle-Blancard & Aurélien Petit, 2019. "Every Little Helps? ESG News and Stock Market Reaction," Journal of Business Ethics, Springer, vol. 157(2), pages 543-565, June.
    2. Paul C. Tetlock, 2014. "Information Transmission in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 6(1), pages 365-384, December.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    4. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    5. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    8. Kvam, Emilie & Molnar, Peter & Wankel, Ingvild & Odegaard, Bernt Arne, 2022. "Do sustainable company stock prices increase with ESG scrutiny? Evidence using social media," UiS Working Papers in Economics and Finance 2022/1, University of Stavanger.
    9. Eugene F. Fama & Kenneth R. French, 2004. "The Capital Asset Pricing Model: Theory and Evidence," Journal of Economic Perspectives, American Economic Association, vol. 18(3), pages 25-46, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Charles Bricongne & Baptiste Meunier & Raquel Caldeira, 2024. "Should Central Banks Care About Text Mining? A Literature Review," Working papers 950, Banque de France.
    2. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    3. Jianchun Fang & Giray Gozgor & Sercan Pekel, 2020. "Where You Export Matters: Measuring Uncertainty in Turkey's Export Markets," CESifo Working Paper Series 8404, CESifo.
    4. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
    5. Esposito, Federico, 2022. "Demand risk and diversification through international trade," Journal of International Economics, Elsevier, vol. 135(C).
    6. Dim, Chukwuma & Koerner, Kevin & Wolski, Marcin & Zwart, Sanne, 2022. "Hot off the press: News-implied sovereign default risk," EIB Working Papers 2022/06, European Investment Bank (EIB).
    7. Lai Fong Woon & Noor Azlinna Azizan & M. Fazilah Abdul Samad, 2011. "A Strategic Framework For Value Enhancing Enterprise Risk Management," Journal of Global Business and Economics, Global Research Agency, vol. 2(1), pages 23-47, January.
    8. Josué Diwambuena & Jean-Paul K. Tsasa, 2021. "The Real Effects of Uncertainty Shocks: New Evidence from Linear and Nonlinear SVAR Models," BEMPS - Bozen Economics & Management Paper Series BEMPS87, Faculty of Economics and Management at the Free University of Bozen.
    9. Altig, Dave & Baker, Scott & Barrero, Jose Maria & Bloom, Nicholas & Bunn, Philip & Chen, Scarlet & Davis, Steven J. & Leather, Julia & Meyer, Brent & Mihaylov, Emil & Mizen, Paul & Parker, Nicholas &, 2020. "Economic uncertainty before and during the COVID-19 pandemic," Journal of Public Economics, Elsevier, vol. 191(C).
    10. Caggiano, Giovanni & Castelnuovo, Efrem & Kima, Richard, 2020. "The global effects of Covid-19-induced uncertainty," Economics Letters, Elsevier, vol. 194(C).
    11. Adediran, Idris A. & Yinusa, Olalekan D. & Lakhani, Kanwal Hammad, 2021. "Where lies the silver lining when uncertainty hang dark clouds over the global financial markets?," Resources Policy, Elsevier, vol. 70(C).
    12. Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024. "Forecasting international financial stress: The role of climate risks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
    13. Blanas, Sotiris & Oikonomou, Rigas, 2023. "COVID-induced economic uncertainty, tasks and occupational demand," Labour Economics, Elsevier, vol. 81(C).
    14. Stefanescu, Razvan & Dumitriu, Ramona, 2015. "Conţinutul analizei seriilor de timp financiare [The Essentials of the Analysis of Financial Time Series]," MPRA Paper 67175, University Library of Munich, Germany.
    15. Caggiano, Giovanni & Castelnuovo, Efrem & Delrio, Silvia & Kima, Richard, 2021. "Financial uncertainty and real activity: The good, the bad, and the ugly," European Economic Review, Elsevier, vol. 136(C).
    16. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    17. Caggiano, Giovanni & Castelnuovo, Efrem & Kima, Richard, 2020. "The global effects of Covid-19-induced uncertainty," Economics Letters, Elsevier, vol. 194(C).
    18. Beckmann, Joscha & Czudaj, Robert L. & Murach, Michael, 2024. "Macroeconomic Effects from Media Coverage of the China-U.S. Trade War on selected EU Countries," MPRA Paper 121751, University Library of Munich, Germany.
    19. Anna Matzner & Birgit Meyer & Harald Oberhofer, 2023. "Trade in times of uncertainty," The World Economy, Wiley Blackwell, vol. 46(9), pages 2564-2597, September.
    20. Gong, Xiaomin & Xie, Fei & Zhou, Zhongsheng & Zhang, Chenyang, 2024. "The enhanced benefits of ESG in portfolios: A multi-factor model perspective based on LightGBM," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).

    More about this item

    Keywords

    ESG Stock Market Prediction Sentiment Analysis Machine Learning Big Data GDELT; ESG; Stock Market Prediction; Sentiment Analysis; Machine Learning; Big Data; GDELT;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-03917335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.