IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01698556.html
   My bibliography  Save this paper

Spatial dependence in (origin-destination) air passenger flows

Author

Listed:
  • Paula Margaretic

    (TSM - Toulouse School of Management Research - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - TSM - Toulouse School of Management - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse)

  • Christine Thomas-Agnan

    (UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse)

  • Romain Doucet

    (IFMK Brest - Institut de formation en masso-kinésithérapie - UBO - Université de Brest - CHRU Brest - Centre Hospitalier Régional Universitaire de Brest)

Abstract

We explore the estimation of origin-destination (OD), city-pair, air passenger flows. Our dataset contains 279 cities, worldwide, over 2010-2012. Allowing for two gravity model specifications (log-normal and Poisson), we compare non-spatial and spatial models. We are the first to apply spatial econometric flow models and eigenfunction spatial filtering approaches to air transport. Distinguishing between origin, destination and network effects, we determine the impact and significance of a change in a variable in a given city, on flows originating from and going to that city and originating from a different city and going to an alternative city. Finally, we compare models based on different specifications of the spatial weight matrix.

Suggested Citation

  • Paula Margaretic & Christine Thomas-Agnan & Romain Doucet, 2017. "Spatial dependence in (origin-destination) air passenger flows," Post-Print halshs-01698556, HAL.
  • Handle: RePEc:hal:journl:halshs-01698556
    DOI: 10.1111/pirs.12189
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01698556
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01698556/document
    Download Restriction: no

    File URL: https://libkey.io/10.1111/pirs.12189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Patuelli & Daniel A. Griffith & Michael Tiefelsdorf & Peter Nijkamp, 2011. "Spatial Filtering and Eigenvector Stability: Space-Time Models for German Unemployment Data," International Regional Science Review, , vol. 34(2), pages 253-280, April.
    2. Yongwan Chun, 2008. "Modeling network autocorrelation within migration flows by eigenvector spatial filtering," Journal of Geographical Systems, Springer, vol. 10(4), pages 317-344, December.
    3. Diana, Tony, 2010. "`Discrete Choice Modelling and Air Travel Demand: Theory and Applications` by Laurie A. Garrow," Journal of Airport Management, Henry Stewart Publications, vol. 5(1), pages 88-89, September.
    4. Wang, Yiyi & Kockelman, Kara M. & Wang, Xiaokun (Cara), 2013. "Understanding spatial filtering for analysis of land use-transport data," Journal of Transport Geography, Elsevier, vol. 31(C), pages 123-131.
    5. Manfred M. Fischer & Arthur Getis (ed.), 2010. "Handbook of Applied Spatial Analysis," Springer Books, Springer, number 978-3-642-03647-7, January.
    6. James P. LeSage & R. Kelley Pace, 2008. "Spatial Econometric Modeling Of Origin‐Destination Flows," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 941-967, December.
    7. Michel Goulard & Thibault Laurent & Christine Thomas-Agnan, 2017. "About predictions in spatial autoregressive models: optimal and almost optimal strategies," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(2-3), pages 304-325, July.
    8. Bhadra, Dipasis & Kee, Jacqueline, 2008. "Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger demand," Journal of Air Transport Management, Elsevier, vol. 14(1), pages 27-39.
    9. Manfred M. Fischer & Daniel A. Griffith, 2008. "Modeling Spatial Autocorrelation In Spatial Interaction Data: An Application To Patent Citation Data In The European Union," Journal of Regional Science, Wiley Blackwell, vol. 48(5), pages 969-989, December.
    10. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric Filtering of Spatial Autocorrelation: The Eigenvector Approach," Environment and Planning A, , vol. 39(5), pages 1193-1221, May.
    11. Daniel Griffith, 2009. "Modeling spatial autocorrelation in spatial interaction data: empirical evidence from 2002 Germany journey-to-work flows," Journal of Geographical Systems, Springer, vol. 11(2), pages 117-140, June.
    12. Christian Beer & Aleksandra Riedl, 2012. "Modelling spatial externalities in panel data: The Spatial Durbin model revisited," Papers in Regional Science, Wiley Blackwell, vol. 91(2), pages 299-318, June.
    13. Robin Dubin, 2003. "Robustness of Spatial Autocorrelation Specifications: Some Monte Carlo Evidence," Journal of Regional Science, Wiley Blackwell, vol. 43(2), pages 221-248, May.
    14. Daniel A. Griffith, 2009. "Spatial Autocorrelation in Spatial Interaction," Advances in Spatial Science, in: Aura Reggiani & Peter Nijkamp (ed.), Complexity and Spatial Networks, chapter 0, pages 221-237, Springer.
    15. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    16. Grosche, Tobias & Rothlauf, Franz & Heinzl, Armin, 2007. "Gravity models for airline passenger volume estimation," Journal of Air Transport Management, Elsevier, vol. 13(4), pages 175-183.
    17. Robin Dubin, 2004. "Spatial Lags And Spatial Errors Revisited: Some Monte Carlo Evidence," Advances in Econometrics, in: Spatial and Spatiotemporal Econometrics, pages 75-98, Emerald Group Publishing Limited.
    18. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    19. repec:rre:publsh:v:37:y:2007:i:1:p:28-38 is not listed on IDEAS
    20. D A Griffith & K G Jones, 1980. "Explorations into the Relationship between Spatial Structure and Spatial Interaction," Environment and Planning A, , vol. 12(2), pages 187-201, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paula Margaretic & Sebastián Becerra, 2017. "Dispersed Information and Sovereign Risk Premia," Working Papers Central Bank of Chile 808, Central Bank of Chile.
    2. Wei Yu & Xiaofei Ye & Jun Chen & Xingchen Yan & Tao Wang, 2020. "Evaluation Indexes and Correlation Analysis of Origination–Destination Travel Time of Nanjing Metro Based on Complex Network Method," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    3. Dardati, Evangelina & Laurent, Thibault & Margaretic, Paula & Thomas-Agnan, Christine, 2024. "Climate, Conflict and International Migration," TSE Working Papers 24-1575, Toulouse School of Economics (TSE).
    4. Dapeng Zhang, 2024. "Examining the Effects of Confirmed COVID-19 Cases and State Government Policies on Passenger Air Traffic Recovery by Proposing an OD Spatial Temporal Model," Networks and Spatial Economics, Springer, vol. 24(2), pages 341-359, June.
    5. Hu, Xinlei & Wang, Xiaokun (Cara) & Ni, Linglin & Shi, Feng, 2022. "The impact of intercity economic complementarity on HSR volume in the context of megalopolization," Journal of Transport Geography, Elsevier, vol. 98(C).
    6. Lukas Dargel, 2021. "Revisiting estimation methods for spatial econometric interaction models," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-41, December.
    7. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    8. Birolini, Sebastian & Cattaneo, Mattia & Malighetti, Paolo & Morlotti, Chiara, 2020. "Integrated origin-based demand modeling for air transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    2. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    3. Clément Gorin, 2016. "Patterns and determinants of inventors' mobility across European urban areas," Working Papers halshs-01313086, HAL.
    4. Yingxia Pu & Xinyi Zhao & Guangqing Chi & Jin Zhao & Fanhua Kong, 2019. "A spatial dynamic panel approach to modelling the space-time dynamics of interprovincial migration flows in China," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(31), pages 913-948.
    5. Daniel A. Griffith & Manfred M. Fischer & James LeSage, 2017. "The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions," Letters in Spatial and Resource Sciences, Springer, vol. 10(1), pages 75-86, March.
    6. Daniel A. Griffith & Manfred M. Fischer, 2016. "Constrained Variants of the Gravity Model and Spatial Dependence: Model Specification and Estimation Issues," Advances in Spatial Science, in: Roberto Patuelli & Giuseppe Arbia (ed.), Spatial Econometric Interaction Modelling, chapter 0, pages 37-66, Springer.
    7. Moura, Ticiana Grecco Zanon & Chen, Zhangliang & Garcia-Alonso, Lorena, 2019. "Spatial interaction effects on inland distribution of maritime flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 1-10.
    8. M. Alonso & M. Beamonte & P. Gargallo & M. Salvador, 2014. "Labour and residential accessibility: a Bayesian analysis based on Poisson gravity models with spatial effects," Journal of Geographical Systems, Springer, vol. 16(4), pages 409-439, October.
    9. Oshan, Taylor M., 2022. "Spatial Interaction Modeling," OSF Preprints m3ah8, Center for Open Science.
    10. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    11. Giuseppe Ricciardo Lamonica & Barbara Zagaglia, 2013. "The determinants of internal mobility in Italy, 1995-2006," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(16), pages 407-440.
    12. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    13. Rodolfo Metulini & Roberto Patuelli & Daniel A. Griffith, 2018. "A Spatial-Filtering Zero-Inflated Approach to the Estimation of the Gravity Model of Trade," Econometrics, MDPI, vol. 6(1), pages 1-15, February.
    14. Kerkman, Kasper & Martens, Karel & Meurs, Henk, 2018. "Predicting travel flows with spatially explicit aggregate models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 68-88.
    15. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    16. Hu, Xinlei & Wang, Xiaokun (Cara) & Ni, Linglin & Shi, Feng, 2022. "The impact of intercity economic complementarity on HSR volume in the context of megalopolization," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Sellner, Richard & Fischer, Manfred M. & Koch, Matthias, 2010. "A spatial autoregressive Poisson gravity model," MPRA Paper 77551, University Library of Munich, Germany.
    18. James LeSage & Carlos Llano-Verduras, 2014. "Forecasting spatially dependent origin and destination commodity flows," Empirical Economics, Springer, vol. 47(4), pages 1543-1562, December.
    19. Christoph Hammer & Aurélien Fichet de Clairfontaine, 2016. "Trade Costs and Income in European Regions," Department of Economics Working Papers wuwp220, Vienna University of Economics and Business, Department of Economics.
    20. Aurélien Fichet de Clairfontaine & Manfred Fischer & Rafael Lata & Manfred Paier, 2015. "Barriers to cross-region research and development collaborations in Europe: evidence from the fifth European Framework Programme," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 577-590, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01698556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.