IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00365583.html
   My bibliography  Save this paper

Discounted and finitely repeated minority games with public signals

Author

Listed:
  • Marco Scarsini

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique, Dipartimento di Scienze Economiche e Aziendali - LUISS - Libera Università Internazionale degli Studi Sociali Guido Carli [Roma])

  • Sergio Scarlatti

    (Dipartimento SEFEMEQ - Università degli Studi di Roma Tor Vergata [Roma, Italia] = University of Rome Tor Vergata [Rome, Italy] = Université de Rome Tor Vergata [Rome, Italie])

  • Jérôme Renault

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, X-DEP-ECO - Département d'Économie de l'École Polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris)

Abstract

We consider a repeated game where at each stage players simultaneously choose one of two rooms. The players who choose the less crowded room are rewarded with one euro. The players in the same room do not recognize each other, and between the stages only the current majority room is publicly announced, hence the game has imperfect public monitoring. An undiscounted version of this game was considered by Renault et al. (2005), who proved a folk theorem. Here we consider a discounted version and a finitely repeated version of the game, and we strengthen our previous result by showing that the set of equilibrium payos Hausdor-converges to the feasible set as either the discount factor goes to one or the number of repetition goes to infinity. We show that the set of public equilibria for this game is strictly smaller than the set of private equilibria.

Suggested Citation

  • Marco Scarsini & Sergio Scarlatti & Jérôme Renault, 2008. "Discounted and finitely repeated minority games with public signals," Post-Print hal-00365583, HAL.
  • Handle: RePEc:hal:journl:hal-00365583
    DOI: 10.1016/j.mathsocsci.2007.12.004
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tristan Tomala, 1998. "Pure equilibria of repeated games with public observation," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 93-109.
    2. Michihiro Kandori & Ichiro Obara, 2006. "Efficiency in Repeated Games Revisited: The Role of Private Strategies," Econometrica, Econometric Society, vol. 74(2), pages 499-519, March.
    3. Jack Ochs, 1990. "The Coordination Problem in Decentralized Markets: An Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(2), pages 545-559.
    4. Green, Edward J & Porter, Robert H, 1984. "Noncooperative Collusion under Imperfect Price Information," Econometrica, Econometric Society, vol. 52(1), pages 87-100, January.
    5. Giulio Bottazzi & Giovanna Devetag, 2002. "Coordination and self-organization in minority games: experimental evidence," CEEL Working Papers 0215, Cognitive and Experimental Economics Laboratory, Department of Economics, University of Trento, Italia.
    6. Dilip Abreu & David Pearce & Ennio Stacchetti, 2010. "Towards a Theory of Discounted Repeated Games with Imperfect Monitoring," Levine's Working Paper Archive 199, David K. Levine.
    7. Drew Fudenberg & David K. Levine, 2008. "Efficiency and Observability with Long-Run and Short-Run Players," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 13, pages 275-307, World Scientific Publishing Co. Pte. Ltd..
    8. Drew Fudenberg & David Levine & Eric Maskin, 2008. "The Folk Theorem With Imperfect Public Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 12, pages 231-273, World Scientific Publishing Co. Pte. Ltd..
    9. repec:dau:papers:123456789/6103 is not listed on IDEAS
    10. Ehud Lehrer, 1992. "Two-Player Repeated Games with Nonobservable Actions and Observable Payoffs," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 200-224, February.
    11. Rubinstein, Ariel, 1979. "Equilibrium in supergames with the overtaking criterion," Journal of Economic Theory, Elsevier, vol. 21(1), pages 1-9, August.
    12. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    13. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    14. Renault, Jerome & Tomala, Tristan, 2004. "Communication equilibrium payoffs in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 49(2), pages 313-344, November.
    15. Lehrer, E, 1989. "Lower Equilibrium Payoffs in Two-Player Repeated Games with Non-observable Actions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 57-89.
    16. Radner, Roy, 1985. "Repeated Principal-Agent Games with Discounting," Econometrica, Econometric Society, vol. 53(5), pages 1173-1198, September.
    17. repec:dau:papers:123456789/6223 is not listed on IDEAS
    18. Renault, Jerome & Scarlatti, Sergio & Scarsini, Marco, 2005. "A folk theorem for minority games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 208-230, November.
    19. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    20. Erev, Ido & Rapoport, Amnon, 1998. "Coordination, "Magic," and Reinforcement Learning in a Market Entry Game," Games and Economic Behavior, Elsevier, vol. 23(2), pages 146-175, May.
    21. Mailath George J. & Matthews Steven A. & Sekiguchi Tadashi, 2002. "Private Strategies in Finitely Repeated Games with Imperfect Public Monitoring," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 2(1), pages 1-23, June.
    22. Lehrer, E, 1990. "Nash Equilibria of n-Player Repeated Games with Semi-standard Information," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(2), pages 191-217.
    23. Igal Milchtaich, 1998. "Crowding games are sequentially solvable," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(4), pages 501-509.
    24. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    25. Renault, Jerome & Scarlatti, Sergio & Scarsini, Marco, 2005. "A folk theorem for minority games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 208-230, November.
    26. Lehrer, Ehud, 1992. "On the Equilibrium Payoffs Set of Two Player Repeated Games with Imperfect Monitoring," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 211-226.
    27. Gossner, Olivier, 1995. "The Folk Theorem for Finitely Repeated Games with Mixed Strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 95-107.
    28. Mailath, George J. & Samuelson, Larry, 2006. "Repeated Games and Reputations: Long-Run Relationships," OUP Catalogue, Oxford University Press, number 9780195300796.
    29. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-922, July.
    30. Igal Milchtaich, 2000. "Generic Uniqueness of Equilibrium in Large Crowding Games," Mathematics of Operations Research, INFORMS, vol. 25(3), pages 349-364, August.
    31. Rubinstein, Ariel & Yaari, Menahem E., 1983. "Repeated insurance contracts and moral hazard," Journal of Economic Theory, Elsevier, vol. 30(1), pages 74-97, June.
    32. Chan, K C, 1988. "On the Contrarian Investment Strategy," The Journal of Business, University of Chicago Press, vol. 61(2), pages 147-163, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    2. Jérôme Renault & Tristan Tomala, 2011. "General Properties of Long-Run Supergames," Dynamic Games and Applications, Springer, vol. 1(2), pages 319-350, June.
    3. Kutay Cingiz & János Flesch & P. Jean-Jacques Herings & Arkadi Predtetchinski, 2020. "Perfect information games where each player acts only once," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 69(4), pages 965-985, June.
    4. repec:dau:papers:123456789/6381 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/2347 is not listed on IDEAS
    2. repec:dau:papers:123456789/6381 is not listed on IDEAS
    3. Jérôme Renault & Tristan Tomala, 2011. "General Properties of Long-Run Supergames," Dynamic Games and Applications, Springer, vol. 1(2), pages 319-350, June.
    4. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    5. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    6. Ashkenazi-Golan, Galit & Lehrer, Ehud, 2019. "What you get is what you see: Cooperation in repeated games with observable payoffs," Journal of Economic Theory, Elsevier, vol. 181(C), pages 197-237.
    7. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
    8. Renault, Jerome & Scarlatti, Sergio & Scarsini, Marco, 2005. "A folk theorem for minority games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 208-230, November.
    9. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    10. Tomala, Tristan, 2009. "Perfect communication equilibria in repeated games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 67(2), pages 682-694, November.
    11. Marie Laclau & Tristan Tomala, 2016. "Repeated games with public information revisited," PSE Working Papers hal-01285326, HAL.
    12. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    13. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    14. Fudenberg, Drew & Yamamoto, Yuichi, 2011. "Learning from private information in noisy repeated games," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1733-1769, September.
    15. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    16. Yamamoto, Yuichi, 2012. "Characterizing belief-free review-strategy equilibrium payoffs under conditional independence," Journal of Economic Theory, Elsevier, vol. 147(5), pages 1998-2027.
    17. Drew Fudenberg & David K. Levine, 2008. "An Approximate Folk Theorem with Imperfect Private Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 14, pages 309-330, World Scientific Publishing Co. Pte. Ltd..
    18. Jeffery Ely & Johannes Horner & Wojciech Olszewski, 2004. "Strategic Commitment Versus Flexibility in a Duopoloy with Entry and Exit," Discussion Papers 1381, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    19. Willemien Kets, 2007. "The minority game: An economics perspective," Papers 0706.4432, arXiv.org.
    20. Laclau, M., 2014. "Communication in repeated network games with imperfect monitoring," Games and Economic Behavior, Elsevier, vol. 87(C), pages 136-160.
    21. Sugaya, Takuo & Wolitzky, Alexander, 2017. "Bounding equilibrium payoffs in repeated games with private monitoring," Theoretical Economics, Econometric Society, vol. 12(2), May.
    22. repec:dau:papers:123456789/6223 is not listed on IDEAS
    23. , H. & ,, 2016. "Approximate efficiency in repeated games with side-payments and correlated signals," Theoretical Economics, Econometric Society, vol. 11(1), January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00365583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.