IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-03723832.html
   My bibliography  Save this paper

Une application de la formule de Jarrow et Rudd aux options sur indice CAC 40

Author

Listed:
  • Gunther Capelle-Blancard

    (TEAM - Théories et Applications en Microéconomie et Macroéconomie - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Emmanuel Jurczenko

    (TEAM - Théories et Applications en Microéconomie et Macroéconomie - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Many empirical studies pointed out that the Black-Scholes model led to a wrong evaluation of deep in-the-money options and deep out-the-money options. These biases are usually attributed to the hypothesis of log-normality of the underlying asset. In order to remove these biaises, Jarrow and Rudd (1982) propose to use a series expansion for the state price density. This approach allows to take non-normal skewness and kurtosis in asset returns into account. Using high frequency data from the SBF database, we examine the explicative and predictive performance of the Jarrow and Rudd option valuation. We find that Jarrow and Rudd's model improves the valuation of CAC 40 index option (PXL).

Suggested Citation

  • Gunther Capelle-Blancard & Emmanuel Jurczenko, 2000. "Une application de la formule de Jarrow et Rudd aux options sur indice CAC 40," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03723832, HAL.
  • Handle: RePEc:hal:cesptp:halshs-03723832
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-03723832
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-03723832/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    3. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    4. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    5. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245, July.
    6. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    7. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    8. Campbell R. Harvey & Robert E. Whaley, 1992. "Dividends and S&P 100 index option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 12(2), pages 123-137, April.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Peter A. Abken & Dilip B. Madan & Buddhavarapu Sailesh Ramamurtie, 1996. "Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options," FRB Atlanta Working Paper 96-5, Federal Reserve Bank of Atlanta.
    11. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    12. Michael Rockinger & Eric Jondeau, 1997. "Estimation et interprétation des densités neutres au risque: une comparaison de méthodes," Working Papers hal-00601588, HAL.
    13. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    16. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    2. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    3. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    4. Jondeau, E. & Rockinger, M., 1998. "Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral," Working papers 47, Banque de France.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    7. Benhamou, Eric & Duguet, Alexandre, 2003. "Small dimension PDE for discrete Asian options," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2095-2114.
    8. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    9. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.
    10. Eric Benhamou & Alexandre Duguet, 2000. "A 2 Dimensional Pde For Discrete Asian Options," Computing in Economics and Finance 2000 33, Society for Computational Economics.
    11. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    12. Eric Benhamou, 2002. "Option pricing with Levy Process," Finance 0212006, University Library of Munich, Germany.
    13. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    14. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    15. Capelle-Blancard, Gunther & Jurczenko, Emmanuel & Maillet, Bertrand, 2001. "The approximate option pricing model: performances and dynamic properties," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 427-443, December.
    16. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    17. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    18. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    19. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    20. Yuji Yamada & James Primbs, 2004. "Properties of Multinomial Lattices with Cumulants for Option Pricing and Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(3), pages 335-365, September.

    More about this item

    Keywords

    option pricing models; density probability functions; volatility forecast; Edgeworth expansion; modèles d'évaluation d'options; fonction de densité de probabilité; prévision de volatilité; développement d'Edgeworth;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-03723832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.