IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/94495.html
   My bibliography  Save this paper

A Bayesian Approach to Inference on Probabilistic Surveys

Author

Listed:

Abstract

We propose a nonparametric Bayesian approach for conducting inference on probabilistic surveys. We use this approach to study whether U.S. Survey of Professional Forecasters density projections for output growth and inflation from 1982 to 2022 are consistent with the noisy rational expectations hypothesis. We find that, in contrast to theory, for horizons close to two years there is no relationship whatsoever between subjective uncertainty and forecast accuracy for output growth density projections, both across forecasters and over time, and only a mild relationship for inflation projections. As the horizon shortens, the relationship becomes one-to-one as theory predicts.

Suggested Citation

  • Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:94495
    Note: Revised August 2024.
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1025.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://www.newyorkfed.org/research/staff_reports/sr1025.html
    File Function: Summary
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Keisuke Hirano, 2002. "Semiparametric Bayesian Inference in Autoregressive Panel Data Models," Econometrica, Econometric Society, vol. 70(2), pages 781-799, March.
    3. Kent Daniel & David Hirshleifer, 2015. "Overconfident Investors, Predictable Returns, and Excessive Trading," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 61-88, Fall.
    4. Ulrike Malmendier & Timothy Taylor, 2015. "On the Verges of Overconfidence," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 3-8, Fall.
    5. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    6. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    7. Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
    8. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    9. Jeff Dominitz & Charles F. Manski, 1996. "Eliciting Student Expectations of the Returns to Schooling," Journal of Human Resources, University of Wisconsin Press, vol. 31(1), pages 1-26.
    10. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    11. Binder, Carola C., 2017. "Measuring uncertainty based on rounding: New method and application to inflation expectations," Journal of Monetary Economics, Elsevier, vol. 90(C), pages 1-12.
    12. Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
    13. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    14. J. E. Griffin, 2011. "Inference in Infinite Superpositions of Non-Gaussian Ornstein--Uhlenbeck Processes Using Bayesian Nonparametic Methods," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 519-549, Summer.
    15. Fushang Liu & Kajal Lahiri, 2006. "Modelling multi-period inflation uncertainty using a panel of density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1199-1219.
    16. Gianna Boero & Jeremy Smith & Kenneth F. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, July.
    17. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    18. Kozeniauskas, Nicholas & Orlik, Anna & Veldkamp, Laura, 2018. "What are uncertainty shocks?," Journal of Monetary Economics, Elsevier, vol. 100(C), pages 1-15.
    19. Simon M. Potter, 2016. "The advantages of probabilistic survey questions: remarks at the IT Forum and RCEA Bayesian Workshop, keynote address, Rimini, Italy, May 2016," Speech 211, Federal Reserve Bank of New York.
    20. Jiaying Gu & Roger Koenker, 2017. "Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes Perspective," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 1-16, January.
    21. Robert Rich & Joseph Tracy, 2010. "The Relationships among Expected Inflation, Disagreement, and Uncertainty: Evidence from Matched Point and Density Forecasts," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 200-207, February.
    22. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    23. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, You & Tay, Anthony, 2021. "The role of macroeconomic and policy uncertainty in density forecast dispersion," Journal of Macroeconomics, Elsevier, vol. 67(C).
    2. Glas, Alexander, 2020. "Five dimensions of the uncertainty–disagreement linkage," International Journal of Forecasting, Elsevier, vol. 36(2), pages 607-627.
    3. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    4. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    5. Michael Clements & Robert W. Rich & Joseph Tracy, 2024. "An Investigation into the Uncertainty Revision Process of Professional Forecasters," Working Papers 24-19, Federal Reserve Bank of Cleveland.
    6. Svetlana Makarova, 2014. "Risk and Uncertainty: Macroeconomic Perspective," UCL SSEES Economics and Business working paper series 129, UCL School of Slavonic and East European Studies (SSEES).
    7. Binder, Carola C., 2017. "Measuring uncertainty based on rounding: New method and application to inflation expectations," Journal of Monetary Economics, Elsevier, vol. 90(C), pages 1-12.
    8. repec:zbw:bofrdp:037 is not listed on IDEAS
    9. Robert Rich & Joseph Tracy, 2021. "A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 233-253, February.
    10. Joshua Abel & Robert Rich & Joseph Song & Joseph Tracy, 2016. "The Measurement and Behavior of Uncertainty: Evidence from the ECB Survey of Professional Forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 533-550, April.
    11. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    12. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
    13. Guido Schultefrankenfeld, 2020. "Appropriate monetary policy and forecast disagreement at the FOMC," Empirical Economics, Springer, vol. 58(1), pages 223-255, January.
    14. Pfajfar, D. & Zakelj, B., 2012. "Uncertainty and Disagreement in Forecasting Inflation : Evidence from the Laboratory (Revised version of CentER DP 2011-053)," Other publications TiSEM 38fac5ce-fe8f-4b61-a679-f, Tilburg University, School of Economics and Management.
    15. Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
    16. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    17. Ambrocio, Gene, 2017. "The real effects of overconfidence and fundamental uncertainty shocks," Research Discussion Papers 37/2017, Bank of Finland.
    18. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    19. Glas, Alexander & Hartmann, Matthias, 2016. "Inflation uncertainty, disagreement and monetary policy: Evidence from the ECB Survey of Professional Forecasters," Journal of Empirical Finance, Elsevier, vol. 39(PB), pages 215-228.
    20. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    21. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Keywords

    Bayesian nonparametrics; probabilistic surveys; noisy rational expectations;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:94495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.