Forecast Combination for Euro Area Inflation - A Cure in Times of Crisis?
Author
Abstract
Suggested Citation
DOI: 10.17016/FEDS.2016.104
Download full text from publisher
Other versions of this item:
- Kirstin Hubrich & Frauke Skudelny, 2017. "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
- Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
References listed on IDEAS
- Kirstin Hubrich & Kenneth D. West, 2010.
"Forecast evaluation of small nested model sets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
- Kirstin Hubrich & Kenneth D. West, 2008. "Forecast Evaluation of Small Nested Model Sets," NBER Working Papers 14601, National Bureau of Economic Research, Inc.
- Hubrich, Kirstin & West, Kenneth D., 2009. "Forecast evaluation of small nested model sets," Working Paper Series 1030, European Central Bank.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Hendry, David F. & Hubrich, Kirstin, 2011.
"Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
- David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
- Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Hubrich, Kirstin, 2005.
"Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?,"
International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
- Hubrich, Kirstin, 2003. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Working Paper Series 247, European Central Bank.
- Kirstin Hubrich, 2004. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," Computing in Economics and Finance 2004 230, Society for Computational Economics.
- Roma, Moreno & Skudelny, Frauke & Benalal, Nicholai & Diaz del Hoyo, Juan Luis & Landau, Bettina, 2004. "To aggregate or not to aggregate? Euro area inflation forecasting," Working Paper Series 374, European Central Bank.
- Marta Bańbura, 2008.
"Large Bayesian VARs,"
2008 Meeting Papers
334, Society for Economic Dynamics.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2008. "Large Bayesian VARs," Working Paper Series 966, European Central Bank.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Canova, Fabio, 2007. "G-7 Inflation Forecasts: Random Walk, Phillips Curve Or What Else?," Macroeconomic Dynamics, Cambridge University Press, vol. 11(1), pages 1-30, February.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014.
"A predictability test for a small number of nested models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
- Hubrich, Kirstin & Granziera, Eleonora & Moon, Hyungsik Roger, 2013. "A predictability test for a small number of nested models," Working Paper Series 1580, European Central Bank.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Kenny, Geoff & Genre, Véronique & Meyler, Aidan & Timmermann, Allan, 2010. "Combining the forecasts in the ECB survey of professional forecasters: can anything beat the simple average?," Working Paper Series 1277, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014.
"Short-term inflation projections: A Bayesian vector autoregressive approach,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
- Giannone, Domenico & Lenza, Michele & Onorante, Luca & Momferatou, Daphne, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Daphné Momferatu & Luca Onorante, 2010. "Short-term inflation projections: a Bayesian vector autoregressive approach," Working Papers ECARES ECARES 2010-011, ULB -- Universite Libre de Bruxelles.
- Kirstin Hubrich & Timo Teräsvirta, 2013. "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Papers 2013-18, Department of Economics and Business Economics, Aarhus University.
- David F. Hendry & Michael P. Clements, 2004.
"Pooling of forecasts,"
Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
- David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zivile Zekaite & Gabe de Bondt & Elke Hahn, 2017.
"Alice: A New Inflation Monitoring Tool,"
EcoMod2017
10414, EcoMod.
- Hahn, Elke & Zekaite, Zivile & de Bondt, Gabe, 2018. "ALICE: A new inflation monitoring tool," Working Paper Series 2175, European Central Bank.
- Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022.
"“Density forecasts of inflation using Gaussian process regression models”,"
AQR Working Papers
202207, University of Barcelona, Regional Quantitative Analysis Group, revised Jul 2022.
- Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
- Tesi Aliaj & Milos Ciganovic & Massimiliano Tancioni, 2023. "Nowcasting inflation with Lasso‐regularized vector autoregressions and mixed frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 464-480, April.
- Andriantomanga, Zo, 2023. "The role of survey-based expectations in real-time forecasting of US inflation," MPRA Paper 119904, University Library of Munich, Germany.
- Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
- Patricia Toledo & Roberto Duncan, 2024. "Forecasting food price inflation during global crises," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1087-1113, July.
- Alessandra Canepa, & Karanasos, Menelaos & Paraskevopoulos, Athanasios & Chini, Emilio Zanetti, 2022. "Forecasting Ination: A GARCH-in-Mean-Level Model with Time Varying Predictability," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202212, University of Turin.
- Chad Fulton & Kirstin Hubrich, 2021.
"Forecasting US Inflation in Real Time,"
Econometrics, MDPI, vol. 9(4), pages 1-20, October.
- Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Finance and Economics Discussion Series 2021-014, Board of Governors of the Federal Reserve System (U.S.).
- Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
- Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
- Gerdesmeier Dieter & Roffia Barbara & Reimers Hans-Eggert, 2017. "Forecasting Euro Area Inflation Using Single-Equation and Multivariate VAR–Models," Folia Oeconomica Stetinensia, Sciendo, vol. 17(2), pages 19-34, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Angela Capolongo & Claudia Pacella, 2021.
"Forecasting inflation in the euro area: countries matter!,"
Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
- Angela Capolongo & Claudia Pacella, 2019. "Forecasting inflation in the euro area: countries matter!," Temi di discussione (Economic working papers) 1224, Bank of Italy, Economic Research and International Relations Area.
- Colin Bermingham & Antonello D’Agostino, 2014.
"Understanding and forecasting aggregate and disaggregate price dynamics,"
Empirical Economics, Springer, vol. 46(2), pages 765-788, March.
- D'Agostino, Antonello & Bermingham, Colin, 2010. "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Research Technical Papers 8/RT/10, Central Bank of Ireland.
- Bermingham, Colin & D'Agostino, Antonello, 2011. "Understanding and forecasting aggregate and disaggregate price dynamics," Working Paper Series 1365, European Central Bank.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Hendry, David F. & Hubrich, Kirstin, 2011.
"Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 216-227.
- David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
- Hendry, David F. & Hubrich, Kirstin, 2010. "Combining disaggregate forecasts or combining disaggregate information to forecast an aggregate," Working Paper Series 1155, European Central Bank.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Andrejs Bessonovs & Olegs Krasnopjorovs, 2021.
"Short-term inflation projections model and its assessment in Latvia,"
Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 21(2), pages 184-204.
- Andrejs Bessonovs & Olegs Krasnopjorovs, 2020. "Short-Term Inflation Projections Model and Its Assessment in Latvia," Working Papers 2020/01, Latvijas Banka.
- Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
- Chad Fulton & Kirstin Hubrich, 2021.
"Forecasting US Inflation in Real Time,"
Econometrics, MDPI, vol. 9(4), pages 1-20, October.
- Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Finance and Economics Discussion Series 2021-014, Board of Governors of the Federal Reserve System (U.S.).
- Cobb, Marcus P A, 2017. "Aggregate Density Forecasting from Disaggregate Components Using Large VARs," MPRA Paper 76849, University Library of Munich, Germany.
- Cobb, Marcus P A, 2017. "Forecasting Economic Aggregates Using Dynamic Component Grouping," MPRA Paper 81585, University Library of Munich, Germany.
- Ivan Kitov & Oleg Kitov, 2013.
"Does Banque de France control inflation and unemployment?,"
Papers
1311.1097, arXiv.org.
- Kitov, Ivan & KItov, Oleg, 2013. "Does Banque de France control inflation and unemployment?," MPRA Paper 50239, University Library of Munich, Germany.
- Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014.
"Short-term inflation projections: A Bayesian vector autoregressive approach,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
- Domenico Giannone & Michèle Lenza & Daphné Momferatu & Luca Onorante, 2010. "Short-term inflation projections: a Bayesian vector autoregressive approach," Working Papers ECARES ECARES 2010-011, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Lenza, Michele & Onorante, Luca & Momferatou, Daphne, 2010. "Short-Term Inflation Projections: a Bayesian Vector Autoregressive approach," CEPR Discussion Papers 7746, C.E.P.R. Discussion Papers.
- Mandalinci, Zeyyad, 2017.
"Forecasting inflation in emerging markets: An evaluation of alternative models,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
- Zeyyad Mandalinci, 2015. "Forecasting Inflation in Emerging Markets: An Evaluation of Alternative Models," CReMFi Discussion Papers 3, CReMFi, School of Economics and Finance, QMUL.
- Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013.
"Short-term inflation forecasting models for Turkey and a forecast combination analysis,"
Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
- Kurmas Akdogan & Selen Baser & Meltem Gulenay Chadwick & Dilara Ertug & Timur Hulagu & Sevim Kosem & Fethi Ogunc & M. Utku Ozmen & Necati Tekatli, 2012. "Short-Term Inflation Forecasting Models For Turkey and a Forecast Combination Analysis," Working Papers 1209, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021.
"Forecasting the production side of GDP,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
- Dr. Gregor Bäurle & Elizabeth Steiner & Dr. Gabriel Züllig, 2018. "Forecasting the production side of GDP," Working Papers 2018-16, Swiss National Bank.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Granziera, Eleonora & Sekhposyan, Tatevik, 2019.
"Predicting relative forecasting performance: An empirical investigation,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
- Granziera, Eleonora & Sekhposyan, Tatevik, 2018. "Predicting relative forecasting performance: An empirical investigation," Bank of Finland Research Discussion Papers 23/2018, Bank of Finland.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023.
"Density forecasts of inflation: a quantile regression forest approach,"
CEPR Discussion Papers
18298, C.E.P.R. Discussion Papers.
- Lenza, Michele & Moutachaker, Inès & Paredes, Joan, 2023. "Density forecasts of inflation: a quantile regression forest approach," Working Paper Series 2830, European Central Bank.
- M. Lenza & I. Moutachaker & I. Moutachaker, 2024. "Density forecasts of inflation : a quantile regression forest approach," Documents de Travail de l'Insee - INSEE Working Papers 2024-12, Institut National de la Statistique et des Etudes Economiques.
- Kirstin Hubrich & Kenneth D. West, 2010.
"Forecast evaluation of small nested model sets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
- Kirstin Hubrich & Kenneth D. West, 2008. "Forecast Evaluation of Small Nested Model Sets," NBER Working Papers 14601, National Bureau of Economic Research, Inc.
- Hubrich, Kirstin & West, Kenneth D., 2009. "Forecast evaluation of small nested model sets," Working Paper Series 1030, European Central Bank.
- Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
More about this item
Keywords
Forecasting; Euro area inflation; forecast combinations; Forecast evaluation;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2017-01-08 (Econometrics)
- NEP-EEC-2017-01-08 (European Economics)
- NEP-FOR-2017-01-08 (Forecasting)
- NEP-MAC-2017-01-08 (Macroeconomics)
- NEP-MON-2017-01-08 (Monetary Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2016-104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.