IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/1996-45.html
   My bibliography  Save this paper

Recent Developments in Bootstrapping Time Series

Author

Listed:
  • Jeremy Berkowitz
  • Lutz Kilian

Abstract

In recent years, several new parametric and nonparametric bootstrap methods have been proposed for time series data. Which of these methods should applied researchers use? We provide evidence that for many applications in time series econometrics parametric methods are more accurate, and we identify directions for future research on improving nonparametric methods. We explicitly address the important, but often neglected issue of model selection in bootstrapping. In particular, we emphasize the advantages of the AIC over other lag order selection criteria and the need to account for lag order uncertainty in resampling. We also show that the block size plays an important role in determining the success of the block bootstrap, and we propose a data-based block size selection procedure.

Suggested Citation

  • Jeremy Berkowitz & Lutz Kilian, "undated". "Recent Developments in Bootstrapping Time Series," Finance and Economics Discussion Series 1996-45, Board of Governors of the Federal Reserve System (U.S.), revised 10 Dec 2019.
  • Handle: RePEc:fip:fedgfe:1996-45
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/1996/199645/199645pap.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Runkle, David E, 1987. "Vector Autoregressions and Reality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 437-442, October.
    2. Francis X. Diebold & Lee E. Ohanian & Jeremy Berkowitz, 1998. "Dynamic Equilibrium Economies: A Framework for Comparing Models and Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 433-451.
    3. Runkle, David E, 1987. "Vector Autoregressions and Reality: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(4), pages 454-454, October.
    4. David E. Runkle, 1987. "Vector autoregressions and reality," Staff Report 107, Federal Reserve Bank of Minneapolis.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    6. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    7. Peters, S C & Freedman, D A, 1984. "Some Notes on the Bootstrap in Regression Problems," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 406-409, October.
    8. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    9. Nankervis, John C & Savin, N E, 1996. "The Level and Power of the Bootstrap t Test in the AR(1) Model with Trend," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 161-168, April.
    10. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    11. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    12. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    13. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    14. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    15. Jeremy Berkowitz & Francis X. Diebold, 1998. "Bootstrapping Multivariate Spectra," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 664-666, November.
    16. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    17. Datta, Somnath, 1995. "Limit theory and bootstrap for explosive and partially explosive autoregression," Stochastic Processes and their Applications, Elsevier, vol. 57(2), pages 285-304, June.
    18. Paul Kabaila, 1993. "On Bootstrap Predictive Inference For Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(5), pages 473-484, September.
    19. Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
    20. Lahiri, Soumendra Nath, 1991. "Second order optimality of stationary bootstrap," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 335-341, April.
    21. Horowitz, J. L., 1995. "Bootstrap Methods In Econometrics: Theory And Numerical Performance," SFB 373 Discussion Papers 1995,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    22. Arup Bose, 1990. "Bootstrap in moving average models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(4), pages 753-768, December.
    23. Heimann, Günter & Kreiss, Jens-Peter, 1996. "Bootstrapping general first order autoregression," Statistics & Probability Letters, Elsevier, vol. 30(1), pages 87-98, September.
    24. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(2), pages 163-185, June.
    25. Lutz Kilian, 1998. "Accounting for Lag Order Uncertainty in Autoregressions: the Endogenous Lag Order Bootstrap Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(5), pages 531-548, September.
    26. Paparoditis, Efstathios, 1996. "Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 277-296, May.
    27. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    28. Lutz Kilian, 1998. "Confidence intervals for impulse responses under departures from normality," Econometric Reviews, Taylor & Francis Journals, vol. 17(1), pages 1-29.
    29. Lahiri, S. N., 1993. "On the moving block bootstrap under long range dependence," Statistics & Probability Letters, Elsevier, vol. 18(5), pages 405-413, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Härdle & Joel Horowitz & Jens‐Peter Kreiss, 2003. "Bootstrap Methods for Time Series," International Statistical Review, International Statistical Institute, vol. 71(2), pages 435-459, August.
    2. Dufour, Jean-Marie & Pelletier, Denis & Renault, Eric, 2006. "Short run and long run causality in time series: inference," Journal of Econometrics, Elsevier, vol. 132(2), pages 337-362, June.
    3. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    4. Pesavento, Elena & Rossi, Barbara, 2007. "Impulse response confidence intervals for persistent data: What have we learned?," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2398-2412, July.
    5. Alain Guay & Jean-Francois Lamarche, 2005. "The Information Content of Implied Probabilities to Detect Structural Change," Working Papers 0804, Brock University, Department of Economics, revised Oct 2008.
    6. Luca Brugnolini, 2018. "About Local Projection Impulse Response Function Reliability," CEIS Research Paper 440, Tor Vergata University, CEIS, revised 09 Jun 2018.
    7. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    8. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    9. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    10. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    11. Jonathan H. Wright, 2000. "Exact confidence intervals for impulse responses in a Gaussian vector autoregression," International Finance Discussion Papers 682, Board of Governors of the Federal Reserve System (U.S.).
    12. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    13. Phillips, Kerk L. & Spencer, David E., 2011. "Bootstrapping structural VARs: Avoiding a potential bias in confidence intervals for impulse response functions," Journal of Macroeconomics, Elsevier, vol. 33(4), pages 582-594.
    14. Alastair R. Hall, 2013. "Generalized Method of Moments," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 14, pages 313-333, Edward Elgar Publishing.
    15. Wright, Jonathan H., 1999. "Frequency domain inference for univariate impulse responses," Economics Letters, Elsevier, vol. 63(3), pages 269-277, June.
    16. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    17. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    18. Fair Ray C, 2003. "Bootstrapping Macroeconometric Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(4), pages 1-26, December.
    19. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    20. Kilian, Lutz & Chang, Pao-Li, 2000. "How accurate are confidence intervals for impulse responses in large VAR models?," Economics Letters, Elsevier, vol. 69(3), pages 299-307, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:1996-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.